استكمال قيم الهطل المطري اليوميّة المفقودة في محطّة تلكلخ باستخدام الشبكات العصبيّة الاصطناعيّة
Abstract
استكمال قيم الهطل المطري اليوميّة المفقودة في محطّة تلكلخ
باستخدام الشبكات العصبيّة الاصطناعيّة
غطفان عبد الكريم عمّار
علاء علي سليمان
عامر قصي الدرويش
تعتبر بيانات الهطل المطري من البيانات الأساسيّة لكافة الدراسات المتعلّقة بتصميم المنشآت المائيّة ودراسات الموازنة المائيّة للأحواض الساكبة ، إلا أنّ وجود ضياعات في هذه البيانات أو ثغرات ضمن السلاسل الزمنيّة يشكّل عائقاً لإجراء هذه الدراسات بالشكل الأمثل، تهدف هذه الدراسة إلى استكمال قيم الهطل المطري اليوميّة في محطّة تلكلخ المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة، التي تستخدم القيم اليوميّة للهطل المطري في المحطات المجاورة كمدخلات، وقد استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب وتحقيق الشبكة مع تغيير طرائق التدريب وعدد الطبقات الخفيّة وعدد العصبونات في كل طبقة منها، وأظهرت النتائج قدرة نماذج الشبكات العصبيّة الاصطناعيّة على استكمال القيم اليوميّة المفقودة للهطل المطري، وبمعاملات ارتباط تزيد على 90% خلال مراحل التحقق لمختلف النماذج. وتوصي هذه الدراسة باستخدام أسلوب الشبكات العصبيّة الاصطناعيّة لتحديد العناصر الأكثر تأثيراً على استكمال بيانات الهطل المطري المفقودة.
Precipitation datasets are basic for all studies that related with the design of water structures and water balance studies. However, losses in these data or gaps in the time series is an obstacle to conducting these studies in the optimal manner, the aim of this study is to fill the Daily Precipitation data in Tal-Kalakh station using Artificial Neural Networks (ANNs), which Daily Precipitation in other meteostations around it as inputs. The network was trained and verified using a back-propagation algorithm with different learning methods, number of processing elements in the hidden layer(s), and the number of hidden layers. Results shown good ability of Artificial Neural Network models to estimate of the daily precipitation values with different inputs, the correlation coefficient was over 90 % for the validation data set in all models. This study recommends using the artificial neural networks approach to identify the most effective parameters to predict Precipitation.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 ttps://creativecommons.org/licenses/by-nc-sa/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors retain the copyright and grant the right to publish in the magazine for the first time with the transfer of the commercial right to Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series
Under a CC BY- NC-SA 04 license that allows others to share the work with of the work's authorship and initial publication in this journal. Authors can use a copy of their articles in their scientific activity, and on their scientific websites, provided that the place of publication is indicted in Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series . The Readers have the right to send, print and subscribe to the initial version of the article, and the title of Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Publisher
journal uses a CC BY-NC-SA license which mean
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.