Bad Data Detection and Identification Using Artificial Neural Networks

Authors

  • Kafi Adera Tishreen University

Keywords:

Artificial Intelligent, Bad Data Detection and Identification, Smart Grid.

Abstract

This paper explores the capability of the artificial neural networks to detect and identify the single and multiple bad data which can be found within the measurements provided to energy management system centers. A reduced model for state estimation was developed in the MATLAB environment using NN-TOOL. A comparison of the single bad data detection and identification between the proposed state estimator and the Weighted Least Squares state estimator on IEEE 14-bus power systems is provided. The results show that the proposed model is more accurate and faster than the WLS state estimator. Furthermore, the proposed methodology is a great alternative to the conventional techniques and is therefore well suited for smart grid applications.

This research presents a different approach for handling bad data compared to the iterative and lengthy statistical methods used previously. It provides a streamlined model for the state estimator that allows for effective and reliable monitoring and operation of the power system with lower computational requirements and the implementation of this procedure in real time, which positively impacts the overall performance of the energy management system. Its main objective is to enhance the functioning of the electric power management system by utilizing artificial neural networks.

Typically, a state estimation is performed prior to the process of detecting, identifying, and excluding bad data, where the traditional state estimator relies on a set of redundant measurements to describe the system through a set of over-specified nonlinear equations, followed by a series of iterative numerical mathematical operations aimed at minimizing measurement errors until the optimal value of the system state variables is achieved. The theory of weighted least squares is one of the most commonly used methods for this purpose.

Published

2025-02-24

How to Cite

1.
عديرة ك. Bad Data Detection and Identification Using Artificial Neural Networks. Tuj-eng [Internet]. 2025Feb.24 [cited 2025Oct.28];46(6):427-38. Available from: https://journal.latakia-univ.edu.sy/index.php/engscnc/article/view/18678
                                                                  ADOConnection.CacheExecute(3600, SELECT 				o.submission_id, 				MAX(s.context_id) AS journal_id, 				MAX(i.date_published) AS i_pub, 				MAX(p.date_published) A..., Array[2]) % line  132, file: DAO.inc.php
                                                               DAO.retrieveCached(SELECT 				o.submission_id, 				MAX(s.context_id) AS journal_id, 				MAX(i.date_published) AS i_pub, 				MAX(p.date_published) A..., Array[2], 3600) % line   91, file: ArticleSearchDAO.inc.php
                                                            ArticleSearchDAO.getPhraseResults(Object:Journal, Array[1], null, null, , 500, 1) % line  202, file: SubmissionSearch.inc.php
                                                         SubmissionSearch._getMergedPhraseResults(Object:Journal, Array[1], , null, null, 500, 1) % line  147, file: SubmissionSearch.inc.php
                                                      SubmissionSearch._getMergedKeywordResults(Object:Journal, Array[4], , null, null, 500, 1) % line  195, file: SubmissionSearch.inc.php
                                                   SubmissionSearch._getMergedPhraseResults(Object:Journal, Array[4], null, null, null, 500, 1) % line  147, file: SubmissionSearch.inc.php
                                                SubmissionSearch._getMergedKeywordResults(Object:Journal, Array[3], null, null, null, 500, 1) % line  133, file: SubmissionSearch.inc.php
                                             SubmissionSearch._getMergedArray(Object:Journal, Array[1], null, null) % line  264, file: SubmissionSearch.inc.php
                                          SubmissionSearch.retrieveResults(Object:Request, Object:Journal, Array[1], null, null, null, Object:DBResultRange, Array[1]) % line   92, file: RecommendBySimilarityPlugin.inc.php
                                       RecommendBySimilarityPlugin.callbackTemplateArticlePageFooter(Templates::Article::Footer::PageFooter, Array[3]) % line  107, file: HookRegistry.inc.php
                                    HookRegistry.call(Templates::Article::Footer::PageFooter, Array[3]) % line 1256, file: PKPTemplateManager.inc.php
                                 PKPTemplateManager.smartyCallHook(Array[1], Object:Smarty_Internal_Template) % line   43, file: 42362804174f266c598cdb32c3208fc745b92101^1c372c95cd85572e0fbc9a53d0323a0b229cfc78_0.app.frontendpagesarticle.tpl.php
                              content_6824e8afae4963_68091933(Object:Smarty_Internal_Template) % line  123, file: smarty_template_resource_base.php
                           Smarty_Template_Resource_Base.getRenderedTemplateCode(Object:Smarty_Internal_Template) % line  114, file: smarty_template_compiled.php
                        Smarty_Template_Compiled.render(Object:Smarty_Internal_Template) % line  216, file: smarty_internal_template.php
                     Smarty_Internal_Template.render(false, 1) % line  232, file: smarty_internal_templatebase.php
                  Smarty_Internal_TemplateBase._execute(Object:Smarty_Internal_Template, null, 42362804174f266c598cdb32c3208fc745b92101, null, 1) % line  134, file: smarty_internal_templatebase.php
               Smarty_Internal_TemplateBase.display(frontend/pages/article.tpl, null, 42362804174f266c598cdb32c3208fc745b92101, null) % line  924, file: PKPTemplateManager.inc.php
            PKPTemplateManager.display(frontend/pages/article.tpl) % line  292, file: ArticleHandler.inc.php
         ArticleHandler.view(Array[1], Object:Request) % line  391, file: PKPRouter.inc.php
      PKPRouter._authorizeInitializeAndCallRequest(Array[2], Object:Request, Array[1], false) % line  231, file: PKPPageRouter.inc.php
   PKPPageRouter.route(Object:Request) % line  143, file: Dispatcher.inc.php
Dispatcher.dispatch(Object:Request) % line  281, file: PKPApplication.inc.php
PKPApplication.execute() % line   68, file: index.php