دراسة التدفق في الناشر الحلقي ذي نوى مثمن الزوايا مع قضبان تثبيت للنواة

الدكتور يوسف ياخور *

(قبل للنشر في 2/2/2003)

□ الملخّص □

النواشر هي أجهزة مخصصة لتهدئة سرعة الجريان، وهي تتميز بتزايد مساحة المقطع الذي تقدمه في أثناء مرور المائع في اتجاه الجريان.

إن عملنا يهدف إلى دراسة الجريان في ناشر أسطواني مع مثبتات داخلية للنواة في نهاية عنفة بخارية وذلك بهدف تحسين مواصفاته وبهدف الحصول على نتائج جيدة. اتجهنا إلى إجراء قياسات للسرعة وقيمة الاضطراب عند مدخل ومخرج الناشر.

بنيت النتيجة على مقارنة النتائج المختلفة مع ما نحصل عليه باستخدام الحساب الرقمي في دراسة النواشر.

^{*}أستاذ مساعد في قسم القوى الميكانيكية كلية الهندسة الميكانيكية والكهربائية-جامعة تشرين - اللاذقية - سورية.

مجلة جامعة تشرين للدراسات والبحوث العلمية _ سلسلة العلوم الهندسية المجلد (25) العدد (25) العدد (25) Tishreen University Journal for Studies and Scientific Research-Engineering Sciences Series Vol (25) No (13) 2003

Étude De L'écoulement Dans Un Diffuseur Annulaire Octogonal Avec Des Moyeux Et Tirants Pour Fixer Ces Moyeux

Dr. Youssef Yakhour *

(Accepted 8/2/2003)	
□ Résumé □	

Les diffuseurs sont des appareils destinés à ralentir les vitesses d'écoulement. Ils se caractérisent donc par une augmentation de la surface offerte au passage du fluide dans le sens de l'écoulement.

Notre travail a pour objectif d'étudier l'écoulement dans un diffuseur annulaire avec tirant à l'aval d'une turbine à vapeur en vue d'en améliorer les performances.

Afin de pouvoir obtenir de bons résultats, nous avons été amenés à effectuer des mesures de profils de vitesses et de taux de turbulence à l'entrée et à la sortie du diffuseur.

La conclusion est basée sur la comparaison des différents résultats et les enseignements que l'on peut en tirer pour l'utilisation du calcul numérique dans l'étude des diffuseurs.

^{*} Professeur Assistant Dans Le Département Du Pouvoir Mécanique –Faculté De Génie Mécanique Et Electrique –Université Tichrine –Lattaquié – SYRIE

الجدول (1) يبين الرموز والتسميات وواحداتها الدولية المستخدمة في البحث.

	• ••	الجدون (۱) يبين الرمور والمسود		
L	m	السرعة المحورية	u	m/sec
L	m	السرعة المماسية	W	m/sec
L	m	السرعة القطرية	V	m/sec
L_{o}	m	السرعة الكلية	\mathbf{V}_{t}	m/sec
K		معامل الأسترجاع	c_p	
S		السرعة المحورية الوسطة عند	$\frac{-}{u_1}$	m/sec
			1	
			$\frac{}{p_{\scriptscriptstyle 1}}$	N/m^2
	Ī		1.1	
R,			$\frac{}{p_2}$	N/m^2
T _u	%	الكتلة الحجمية للمائع الجاري	r	Kg/m ³
T_{u}	%	الضغط الكلي عند مدخل الناشر	p_{t1}	N/m ²
		معامل استرجاع الضغط		
a	(°)	الأستاتيكي المرجعي للسرعة	c_{pu}	
		المحورية عند مدخل الناشر		
		معامل استرجاع الضغط		
		الاستاتيكي		
C		المرجعي للسرعة المحورية عند	C	
pwv		مدخل الناشروللضغوط الاستاتكية	pwu	
		الوسطى عند الجدار الداخلي		
		للناشر		
		معامل استرجاع الضغط		
F _o	(°)	الأستاتيكي المرجعي للسرعة	c_{pv}	
		الكليةعند مدخل الناشر		
_	(0)	الزاوية النظرية لجريان المائع عند		(0)
a _{tur}		المخرج	a _{2t}	(°)
_	(0)	المسافة القطرية للسطح الخارجي	D	
a ₁	(-)	للناشر عند محور الناشر	\mathbf{r}_{0}	m
		المسافة القطرية للسطح الداخلي		
R	m	للناشر (بعد سطح النواة عن	R_{i}	m
		محور الناشر)		
	$\begin{array}{c c} L \\ \hline L \\ \hline L_1 \\ \hline L_2 \\ \hline L_3 \\ \hline L_4 \\ \hline K \\ \hline S \\ \hline a_2 \\ \hline R_e \\ \hline T_u \\ \hline T_u \\ \hline a \\ \hline \end{array}$	$\begin{array}{c cccc} L & m \\ \hline L & m \\ \hline L_1 & m \\ \hline L_2 & m \\ \hline K & \\ \hline S & \\ \hline a_2 & \\ \hline R_e & \\ \hline T_u & \% \\ \hline T_u & \% \\ \hline T_u & \% \\ \hline a & (°) & \\ \hline \end{array}$	L m Im Im Asalah Irangeria Im Im </td <td>L m السرعة المحورية u L m السرعة المحورية القطرية W L m السرعة القطرية القطرية القرية المسرعة الكلي V V V V V V V V V V V V V Cp N Cp N Cp N Cp N Image: N</td>	L m السرعة المحورية u L m السرعة المحورية القطرية W L m السرعة القطرية القطرية القرية المسرعة الكلي V V V V V V V V V V V V V Cp N Cp N Cp N Cp N Image: N

ەقدەة :

النواشر هي أجهزة مخصصة لتخفيف سرعة التدفق، وتتميز بتزايد المساحة المقدمة لمرور السائل في اتجاه الجريان.

يمكننا الحصول على هذا النزايد في المقطع باستخدام أنابيب بسيطة متباعدة والأجهزة الملائمة تسمى ناشر مخروطي. لكننا صناعياً وبخاصة في مجال العنفات البخارية نجبر على استخدام نواشر ذات نوى مركزية، هذه النواشر تسمى النواشر الحلقية وتتواجد بشكل خاص في منشآت الآلات العنفية عند مخرج العنفة مع دور أساسي لها وهو تحويل الطاقة الحركية للبخار إلى طاقة ضغط، يترافق هذا التحويل الأساسي للطاقة مع ضياع قسم منها، ولهذا يقدم المصممون عدداً من النواشر ذات النوى بأشكال مختلفة. مثلاً: ناشر محوري متبوع بنواة مخروطية متناهية ، مع العلم أن التدفق يصطدم بحواجز داخلية مثل قضبان التثبيت للنواة التي تؤثر بشكل أو بآخر على الجريان.

المدف من البحث :

إن هدف بحثنا هذا هو دراسة التدفق في ناشر حلقي ذي نوى مثمن الزوايا مع قضبان تثبيت للنواة.

دراسة مرجعية:

إن هذه الفقرة مخصصة لإعطاء فكرة سريعة عن بعض الدراسات التي أجريت بالنسبة للنواشر ذات الأشكال المختلفة والمستعملة في مخارج العنفات البخارية، وسنبين بعضاً منها بعد اعطاء فكرة سريعة عن الجريان الدوامي لفهم الجريان في النواشر

أ- الجريان الدوامي:

يمثل الجريان الدوامي ليس فقط السرعة المحورية أو الوسطية $\stackrel{\longleftarrow}{u}$ لكن أيضاً السرعة المماسية $\stackrel{\longleftarrow}{w}$. تصنع السرعة الكلية $\stackrel{\longleftarrow}{v}_t = \stackrel{\longleftarrow}{u} + \stackrel{\longleftarrow}{w}$ واوية تسمى بزاوية سويرل والمحددة بالعلاقة:

$$\tan a = \frac{w}{u}$$

كما هو مبين في الشكل (1).

 v_t يفضل بعض الكتاب أخد السرعة الكلية عند المدخل

يحدد عامل الاسترجاع بالاستناد إلى السرعة المحورية عند المدخل بالعلاقة:

$$c_{pu} = \frac{\overline{p_2} - \overline{p_1}}{\frac{r}{2} \overline{u_1}^2}$$

كما يحدد عامل الاسترجاع بالاستناد إلى السرعة الكلية عند المدخل بالعلاقة:

$$c_{pv} = \frac{\overline{p}_2 \cdot \mathbf{\&} \overline{p}_1}{\overline{p}_{t1} - \overline{p}_1} = \frac{\overline{p}_2 - \overline{p}_1}{2 \overline{V}_{t1}^2}$$

إن الضغوط الستاتيكية الوسطى عند المدخل والمخرج هي ضغوط مقاسة عند الجدار:

$$c_{\mathrm{pwu}} = \frac{\overline{p_{1}}}{\overline{p_{1w}}}$$
 و $\overline{p_{2}} = \overline{p_{2w}}$ $\overline{p_{2}} = \overline{p_{2w}}$ $\overline{p_{2w}} - \overline{p_{1w}}$ $\overline{p_{2w}} - \overline{p_{2w}}$ $\overline{p_{2w}} - \overline$

یمکن أن یکتب بالعلاقة : $\overline{r.w} = const$) یمکن أن یکتب بالعلاقة :

$$h = \frac{\frac{\stackrel{\text{de}}{cos^2 a_1} \stackrel{\ddot{o}}{\div} + C_p}{\stackrel{\text{de}}{cos^2 a_1} \stackrel{\ddot{o}}{\varnothing}}}{\frac{1}{\cos^2 a_1} - \frac{1}{\cos^2 a_{2r}} \stackrel{\text{de}}{cos^2} \stackrel{\ddot{o}}{\overset{\dot{c}}{\otimes}}}$$

 $an \overline{a_1} = \dfrac{\overline{w_1}}{u_1}$: هي الزاوية الوسطى لسويرل عند المدخل والمعطاة بالعلاقة $\overline{a_1}$ عيث

و $\overline{a_{2t}}$ هي الزاوية النظرية للجريان عند المخرج والتي نكون قد حصلنا عليها في حال كان سير الجريان في الناشر ثابتاً.

باستخدام العلاقات التالية:

$$\vec{r}.\vec{w} = \text{const} \cdot \vec{U}.A = \text{const} \cdot \tan \vec{a} = \frac{\vec{W}}{\vec{U}}$$

يمكننا أن نكتب:

$$\tan \overline{a}_{2t} = \tan \overline{a}_1 \cdot \frac{\overline{r}_{s1}}{\overline{r}_{s2}} \cdot \frac{A_2}{Al}$$

حيث $\overline{r_{s2}}$ و $\overline{r_{s2}}$ هي أنصاف أقطار الدوائر التي تفصل مقاطع المدخل والمخرج لناشر على سطحين متشابهين.

$$\overline{r_s} = \mathbf{E} \left(\mathbf{R_o}^2 + \mathbf{R_i}^2 \right) / 2 \mathbf{E}^{0.5}$$

حيث $R_{\rm o}$ و $R_{\rm i}$ هي على التوالي أنصاف الأقطار الخارجية والداخلية لناشر أسطواني.

يمكننا أن نلاحظ أنه لو كان الجريان دون زاوية سويرل عند المدخل ($\overline{a_1} = \overline{a_{2t}} = 0^0$)، تصبح علاقة المردود بالشكل :

$$h = \frac{C_p}{C_{pi}} = \frac{C_p}{1 - \underbrace{RA_p \ddot{o}^2}_{A_2 \dot{\phi}}}$$

إن معامل الاسترجاع المثالي للضغط من أجل جريان دوامي مضطرب في ناشر أسطواني [2] يعطى بالعلاقة:

$$C_{pi} = 1 - \frac{A_1}{E} \frac{\ddot{o}^2}{A_2} + \tan^2 \frac{A_1}{C} \frac{\ddot{o}^2}{C} - \frac{\ddot{o}^2}{\frac{1}{r_2}} \frac{\ddot{o}^2}{\ddot{o}^2}$$

: حيث \overline{r}_2 هي أنصاف أقطار متوسطة لمقاطع الدخول والخروج للناشر $\overline{r}=(R_o+R_i)/2$

يمكننا أن نلاحظ بأن التزايد في المقطع لمرور المائع عند الخروج هو المسؤول عن استرجاع الضغط، وكدلك يمكن لسويرل أن يسبب مشاركة غير مهملة لهدا الاسترجاع، حتى بغياب اختلاف السطوح.

ب - الناشر الحلقى ذو القبة المتباعدة:

لقد أعطى سوفران وكلومب [3] عامل استرجاع الضغط للنواشر ذات السطح الأملس (الشكل 2) كتابع لنسبة المساحتين $\frac{A_2}{A}$ والطول اللابعدي للناشر $\frac{\overline{L}}{DR_1}$. حيث حددا الطول الوسطي للناشر \overline{L} وكذلك \overline{L} للناشر \overline{L} = (Li +Lo)/2

$\Delta R1 = Ro-Ri$

وقد أظهرا أن النواشر الحلقية التي زواياها تتراوح بين (30° - 5°) ونسبة أقطار المدخل $\frac{R_{i}}{R_{o}}$ تتراوح بين (0.55-0.70) ممكن أن تنطبق عليها العلاقتان السابقتان كلياً. وقد بينا أيضاً بأن الشكل الهندسي لهذه النواشر يجعل تأثير الطبقة الحدية وعدم تجانس السرعة عند المدخل على مميزات الناشر ضعيفاً ويمكن ضبطه بوضع نواة ما عند المدخل.

ج- النواشر الأسطوانية المستخدمة في العنفات : [5], [4]

إن هذه النواشر هي غالباً ما توضع عند مخرج العنفة وفي مجالات استخدام كثيرة، مثلاً في محركا ت الطائرات حيث توضع هذه النواشر غالباً خلف الضواغط. إن الجريان في هذه النواشر يظهر وجود مركبة مماسية وكذلك اضطراباً شديداً إضافة إلى ذلك تظهر مركبة دورية تنتج عن وجود الآلة العنفية في المقدمة وهذه النواشر تستخدم أحياناً في مؤخرة أنبوب أسطواني أو حتى مقدمة مروحة، والجريان في المدخل في هذه الحالة هو أكثر استقراراً ويمكن أن لا توجد مركبة مماسية للسرعة ويمكن أن يكون اضطراب الجريان منخفضاً.

إن مميزات النواشر تتأثر بشكل قوي بما هو موضوع في المقدمة أمام الناشر وما يهمنا في بحثنا هذا هو عندما يكون الناشر مسبوقاً بعنفة، لذلك سندرس مقارنة بين ناشر مسبوق بعنفة وآخر مسبوق بأنبوب.

عامل استرجاع الضغط للناشر:

إن مقارنة استرجاع الضغط الحاصلة عند مخرج الناشر في حال وجود أنبوب أو عنفة أمام الناشر يبين أن قيمة العامل Cp تكون أعلى عندما يوضع الناشر في مؤخرة العنفة ([6] (zierer) ما في الشكل (3). إن استرجاع الضغط الجيد يعود إلى الخليط الكبير في الاضطراب والذي يؤدي إلى تجمع نقاط الانفصال في الجريان ضمن الناشر. علماً أن AR تمثل العلاقة بين هواء الخروج وهواء الدخول اناشر أسطواني AR وتساوي

:

$$AR = 1 + 2 \frac{L.R_o.Tanf_0}{R_o^2 - R_i^2} + \frac{L^2.Tan^2f_o}{R_o^2 - R_i^2}$$

عامل ضياع الضغط الكلي في الناشر:

إن هبوط الضغط الكلي يتعلق بشكل الناشر وهو يتبع تزايد المقطع وكذلك توزع السرعة القطري عند مدخل الناشر وكذلك الضياع الناتج عن خطوط التيار في مؤخرة العنفة. ففي تجارب (Zierer,1993) [6] تبين أقل ضياع في الضغط الكلي يحصل عند نسب صغيرة لمقاطع المساحات (بين مخرج العنفة ومخرج الناشر) لأن تتاقص سرعة الجريان منخفض. وهذا الضياع في الضغط يكون من مرتبة (14%-5%) من الضغط الديناميكي عند مدخل الناشر وذلك حسب شروط العمل ونسبة المقاطع. إن 1-Cp هي عادة محصورة بين الديناميكي وذلك بسبب الانتشار غير الكافي للجريان. وعند نسب مساحات صغيرة فإن عامل القدرة عند مخرج الناشر 1-Cp وذلك بسبب الانتقاص يكون مصحوباً بتزايد موافق في السرعة الوسطى 1-Cp الناشر 1-Cp الناشر 1-Cp الناشر 1-Cp المتاقص وهذا النتاقص يكون مصحوباً بتزايد موافق في السرعة الوسطى 1-Cp

عند نسب مساحات كبيرة فإن سبب الانتشار غير الكافي هو التوزع الغير منتظم للسرعة عند مخرج الناشر.

الدراسات التجريبية :

نعالج هنا تجريبياً هذا العمل بشكل خاص لقياس تغير السرعات وحساب الغزارة. والهدف هو معرفة معطيات الاضطراب مستخدمين نماذج لجريانات مضطربة. كما سنقدم وصفا لناشر حلقي مع الجهاز الذي استخدم والنتائج المحصول عليها.

وصف التجميزات:

تتألف المنشأة من طاولة تجريب عليها ناشر حلقي (الشكل 4)، ويلاحظ من الشكل أن الناشر مثمن الزوايا ذو نواة مركزية. يتم قياس الضغوط باستخدام مآخذ للضغط وقياس درجات الحرارة باستخدام مسابر للحرارة

نتائج القياسات :

إن قياس السرعة في مقاطع الدخول والخروج للناشر تم إجراءها. ولو كان هناك مسبار للشريط الساخن لأمكن الحصول على مركبات السرعة وكذلك تموجاتها ولهذا تمت الاستفادة من بعض المراجع للمقارنة. نتائج هذه السرع نسبت إلى السرعة الوسطى المحورية \overline{U} عند مدخل الناشر وقد تمت الدراسة على جريان محوري.

$$\bar{a}_{tur} = 90^{\circ}; = 0 \ \bar{a}_{tur} = 90^{\circ};$$
 = -جريان محوري تقريباً

إن قياس السرعة في مقاطع الدخول والخروج للناشر سيتم تقديمها في الفقرتين اللاحقتين أ وب. إن هذه النتائج للسرعة حولت إلى شكل لا بعدي بالاستعانة بالسرعة الوسطى المحورية \overline{U}_1 كسرعة مرجعية عند مدخل الناشر، بينما المسافة القطرية المقاسة اعتباراً من السطح الداخلي (R-Ri) تم تحويلها إلى صورة لابعدية باستخدام المسافة القطرية بين السطح الخارجي والداخلي (Ro-Ri). إن أنصاف الأقطار الخارجية والداخلية للناشر عند المدخل المحورية عند المحورية عند \overline{U}_1 والقطر الهيدروليكي 0.06885 و 0.01 و 0.01 هو 0.01

$$Re = U1.2\Delta R1/v = 5.97 \ 10^{5}$$

أ- المستوي A (مخرج العنفة ومدخل الناشر):

يبين الشكل (5) التوزع القطري للمركبات المحورية والقطرية والمماسية لسرعة الدخول إلى الناشر. إن بروفيل السرعة المحورية يظهر قيمتين أعظميتين قرب الجدار الداخلي والخارجي.

إن السرعة المماسية W المبينة في الشكل (5) تزداد نحو السطح الخارجي للناشر أما السرعة القطرية V (1) لها نفس التوجه الذي تتحاه السرعة المماسية W بمعنى أنها أكبر قرب الجدار الخارجي.

وإن زاوية الناشر المستخدم (02=0) لها تأثير مهم على عامل القدرة الحركية وبالنتيجة على ضياع الحمولة الناتج عن قضبان تثبيت النواة.

إن التوزع القطري لتموجات السرعة المضطربة \sqrt{u} ، \sqrt{u} ، \sqrt{v} ، \sqrt{v} مبينة في الشكل (6) ويبين الشكل (7) تحولات زاوية سويرل (a) كتابع للمسافة القطرية اللابعدية، فنلاحظ أنها تقترب من الصفر عند السطح الخارجي للناشر.

ويبين الشكل (8) كثافة الاضطراب Tu، فنلاحظ هنا تزايد بكمية الاضطراب نحو الجدار الخارجي للنواة وكذلك تزايد أكثر أهمية قرب السطح الخارجي للناشر بوضوح. إن تطور الكثافة الوسطى للاضطراب

عند المدخل تعطي قيمة $\overline{T_u} = \frac{1}{A} \grave{o} dA$. $\overline{T_u} = \frac{1}{A} \grave{o} dA$.

إن مركبات السرعة تم تحليلها بالاعتماد على طريقة المجموع الوسطي. وبشكل عام إن النتائج التجريبية لكثافة الاضطراب هي متوافقة مع القياسات الأخرى التي أجريت في مؤخرة العنفة.

ب- المستوى E مخرج الناشر المحورى:

حسب نتائج القياس عند مدخل الناشر نلاحظ أن نقصان السرعة والمركبات الأخرى تكون كبيرة. أما مخطط السرعة المحورية والقطرية والمماسية عند مخرج الناشر هي مبينة على الشكل (9). من مخطط السرعة المحورية نلحظ وجود رأس حاد ومنطقة عودة للسرعة (U<0 m/sec) قرب السطح الداخلي

مخطط في مخطط الرأس الحاد ينتج عن أن السرعة ستعود لأخد قيم موجبة. عدم التوافق هذا في مخطط $\frac{\left(R-Ri\right)}{\left(R_{o}-Ri\right)} < 0.25$

السرع المحورية يزيد عامل القدرة الحركية عند مخرج الناشر \overline{a}_2 ويقلل من استرجاع الضغط.

إن القياسات في منطقة انفصال خطوط التيار هي صعبة جداً لأن الجريان يتموج كثيراً. وممكن أن تعطي نتائج مغلوطة كما بين [7] (Ozcan, 1995).

إن درجة سويرل ممكن أن تحدد بعدد سويرل (s) الدي هو عدد لابعدي يمثل التدفق المحوري لكمية الحركة الزاوية مقسومة على التدفق المحوري لكمية الحركة المحورية وعلى نصف قطر الأنبوب المكافئ ومن أجل ناشر محوري فإن عدد سويرل يعطى بالعلاقة:

$$s = \frac{1}{R_o} \cdot \frac{\overset{R_o}{O} \cdot u \cdot w \cdot r^2 \cdot dr}{\overset{R_i}{O} \cdot u^2 \cdot r \cdot dr}$$

. (10) مبين على الشكل مبين على الشكل المرب التوزع القطري لتموجات سرعة الاضطراب $\sqrt{u c}$ ، $\sqrt{u c}$

إن التوزع القطري للزاوية α ممثل في الشكل (11). من أجل زاوية سويرل Swirl المرجعية (a) فإن تأثير سويرل ضئيل لأن القيم المطلقة للزاوية الوسطى لسويرل ولعدد سويرل هي أقل بكثير منها عند مدخل الناشر α = -11 (عند المدخل α = -7,3°) و α = -7,3°

وكذلك كثافة الاضطراب Tu مبينة على الشكل (12). إن هذه التموجات لسرعة الاضطراب تتغير بشكل كبير وان قيماً صغيرة لوحظت في مناطق انفصال خطوط التيار قرب السطح الداخلي.

 $\overline{T_u}=15,5\%$ من جهة أخرى فإن مخطط كثافة الاضطراب يظهر اضطراباً عالياً في هذا المقطع $(\overline{T_u}=5,5\%)$ عند المدخل $(\overline{T_u}=5,5\%)$.

نتائج وتوصيات:

إن نتائج القياسات الجارية وتحليل هذه النتائج عددياً تم تقديمها من خلال الأشكال المرفقة عند مدخل ومخرج الناشر وإن تحولات السرعة تم تحليلها بطريقة متوسط المجموع. بشكل عام فإن النتائج التجريبية لكثافة الاضطراب هي ذات توافق جيد مع القياسات الأخرى التي أجريت في مؤخرة ضاغط أو عنفة. إن استخدام مسبرين لقياس الجريان غير المستقر وثلاثي البعد يشكل صعوبة وإمكانية خطأ في القياس ولتلافي هذه الأخطاء كان من المفضل استخدام مسبر ذو ثلاثة خيوط ساخنة والذي يسمح آنياً بقياس المركبات الثلاثة للسرعة

الجدول (2) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري لمركبات السرعة الوسطى عند مدخل ناشر محوري (الشكل 5)

0.958	0.916	0.875	0.833	0.75	0.708	0.666	0.604	0.458	0.5	0.458	0.395	0.354	0.333	0.25	0.187	0.125	0.0833	$\frac{R - R_i}{R_o - R_i}$
0.53	0.82	1.12	1.2	1.1	1	1.02	1.05	1.053	1.066	1.11	1.12	1.166	1.2	1.266	1.32	1.33	1.4	$\frac{\mathbf{u}}{\mathbf{u}_{1}}$
0.72	0.633	0.466	0.413	0.366	0.333	0.32	0.2	0.233	0.206	0.206	0.206	0.2	0.193	0.166	0.133	0.126	0.133	$\frac{v}{\overline{u_1}}$
0.066	0.133	0.066	0.073	0	0.133	-0.29	0.266	-0.3	-0.39	-0.4	-0.42	-0.42	-0.47	-0.46	-0.42	-0.4	-0.4	$\frac{\mathbf{w}}{\overline{\mathbf{u}_{1}}}$

الجدول (3) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري للسرعة لتموج الاضطراب عند مدخل ناشر محوري (الشكل 6)

0.958	0.916	0.875	0.833	0.75	0.708	0.666	0.604	0.458	0.5	0.458	0.395	0.354	0.333	0.25	0.187	0.125	0.0833	$\frac{R - R_i}{R_o - R_i}$
0.044	0.102	0.126	0.108	0.102	0.08	0.0652	0.06	0.056	0.052	0.044	0.042	0.04	0.038	0.034	0.047	0.0572	0.06	$\frac{\sqrt{u} \vec{c}}{\overline{u_1}}$
0.128	0.1	0.088	0.084	0.081	0.0804	0.08	0.07	0.068	0.066	0.066	0.0648	0.064	0.0612	0.06	0.056	0.072	0.07	$\frac{\sqrt{v\vec{\boldsymbol{\mathcal{C}}}}}{\overline{u_1}}$
0.0176	0.074	0.076	0.1	0.092	0.06	0.054	0.0496	0.0488	0.048	0.047	0.046	0.042	0.04	0.044	0.048	0.06	0.056	$\frac{\sqrt{\mathbf{w}}}{\overline{\mathbf{u}_1}}$

الجدول (4) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري للزاوية α عند مدخل ناشر محوري (الشكل 7)

0.958	0.916	0.875	0.833	0.75	0.708	0.666	0.604	0.458	0.5	0.458	0.395	0.354	0.333	0.25	0.187	0.125	0.0833	$\frac{R - R_i}{R_o - R_i}$
4.285	8.571	2.571	2.857	0	8.571	12.857	14.28	-15.4	20	20.857	20.857	20.857	20.857	-20	- 18.571	15.71	-15.71	α°

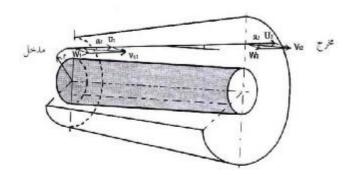
الجدول (5) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري لكثافة الاضطراب عند مدخل ناشر محوري (الشكل 8)

0.958	0.916	0.875	0.833	0.75	0.708	0.666	0.604	0.458	0.5	0.458	0.395	0.354	0.333	0.25	0.187	0.125	0.0833	$\frac{R - R_i}{R_o - R_i}$
6.545	7.381	8.11	8	7.636	6	5.454	5.09	4.727	4.69	4.181	4.363	4	3.636	4	4.363	5.454	5.091	Tu %

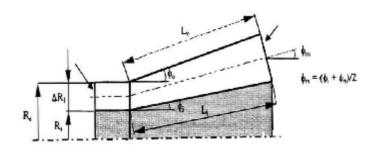
الجدول (6) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري لمركبات السرعة الوسطى عند مخرج ناشر محوري (الشكل 9)

0.982	0.979	0.976	0.973	0.97	0.967	0.964	0.961	0.958	0.916	0.875	0.833	0.75	0.708	0.666	0.604	0.458	0.500	0.458	0.395	0.354	0.333	0.250	0.1875	0.125	0.0833	$\frac{R - R_i}{R_o - R_i}$
0.16	0.2	0.24	0.24	0.36	0.38	0.44	0.6	0.64	0.652	0.64	0.6	0.54	0.52	0.46	0.44	0.2	0.1	0.08	0.082	0.08	0.08	-0.06	-0.045	-0.04	-0.04	$\frac{\underline{u}}{\underline{u}_1}$
-0.04	-0.08	-0.11	-0.12	-0.2	-0.18	-0.3	-0.32	-0.41	-0.42	-0.42	-0.32	-0.3	-0.24	-0.18	-0.2	-0.08	-0.04	-0.04	-0.04	-0.02	-0.02	0	0	0.036	0.04	$\frac{v}{\overline{u_1}}$
0.06	0.06	-0.06	-0.06	0.032	-0.06	-0.06	-0.08	0.064	0.064	-0.08	-0.06	0.06	-0.04	-0.04	-0.04	-0.02	0	0	0	0	0	0	0	0	0	$\frac{\mathbf{w}}{\overline{\mathbf{u}_1}}$

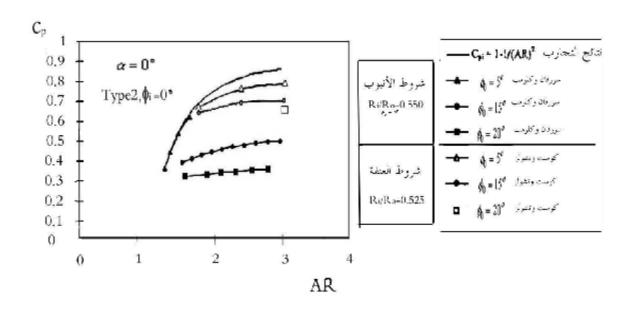
الجدول (7) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري لسرعة الاضطراب عند مخرج ناشر محوري (الشكل 10)

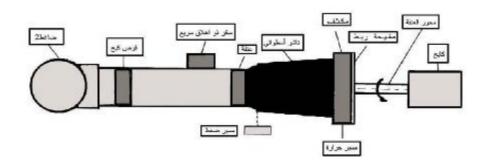

0.982	0.979	0.976	0.973	0.97	0.967	0.964	0.961	0.958	0.916	0.875	0.833	0.75	0.708	0.666	0.604	0.458	0.500	0.458	0.395	0.354	0.333	0.250	0.1875	0.125	0.0833	$\frac{R - R_i}{R_o - R_i}$
0.05	0.058	0.067	0.08	0.067	0.084	0.094	0.084	0.084	0.1	0.11	0.114	0.112	0.11	0.113	0.115	0.63	0.41	0.021	0.029	0.023	0.029	0.027	0.021	0.027	0.027	$\frac{\sqrt{u}\cancel{c}}{\overline{u}_1}$
0.016	0.035	0.04	0.06	0.067	0.052	0.073	0.061	0.07	0.08	0.092	0.088	0.075	0.067	0.056	0.07	0.08	0.061	0.044	0.02	0.014	0.021	0.019	0.02	0.021	0.02	$\frac{\sqrt{v} \vec{c}}{\overline{u_1}}$
0.046	0.05	0.046	0.05	0.058	0.067	0.06	0.073	0.071	0.061	0.073	0.074	0.075	0.075	0.08	0.08	0.071	0.041	0.022	0.021	0.022	0.02	0.021	0.02	0.019	0.01	$\frac{\sqrt{w \not c}}{\overline{u_1}}$

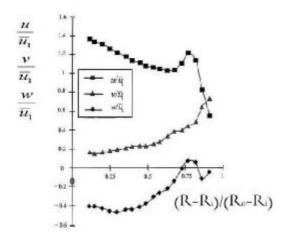
الجدول (8) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري للزاوية ه عند مخرج ناشر محوري (الشكل 11)

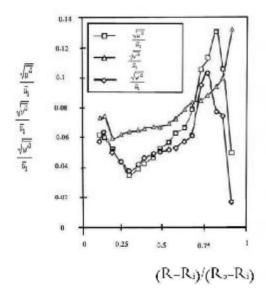

0.002	0.070	0.076	0.072	0.07	0.067	0.064	0.061	0.050	0.016	0.075	0.022	0.75	0.700	0.000	0.604	0.450	0.500	0.450	0.205	0.254	0.222	0.250	0.1075	0.125	0.0922	R - R _i
0.982	0.979	0.976	0.973	0.97	0.967	0.964	0.961	0.958	0.916	0.875	0.833	0.75	0.708	0.666	0.604	0.458	0.500	0.458	0.395	0.354	0.333	0.250	0.1875	0.125	0.0833	$R_o - R_i$
-23	-17	-12.6	-7.99	-8	-8	-8	-5.59	-5.6	-5.6	-5.6	-2	-2	-4	-4	-2	-4	-1.8	-2	-3	-4	-2	-2	0	6	2	α°

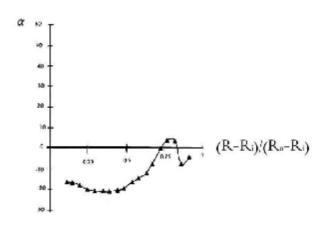
الجدول (9) يبين نتائج القياسات التي أجريت لإيجاد التوزع القطري لكثافة الاضطراب عند مخرج ناشر محوري (الشكل 12)


0.982	0.979	0.976	0.072	0.97	0.067	0.064	0.061	0.059	0.916	0.975	0.822	0.75	0.708	0.666	0.604	0.458	0.500	0.458	0.205	0.254	0.222	0.250	0.1075	0.125	0.0922	$R - R_i$
0.982	0.979	0.976	0.973	0.97	0.967	0.964	0.961	0.958	0.916	0.873	0.855	0.73	0.708	0.000	0.604	0.438	0.300	0.438	0.395	0.354	0.333	0.250	0.1875	0.123	0.0833	$R_o - R_i$
12.5	13.5	14.8	16	19	17	21	21.5	20	21	22	23.5	24	23	22.5	24	13.9	8.5	5.7	6.8	5.8	6.8	6.5	5.7	6.5	5.8	Tu %

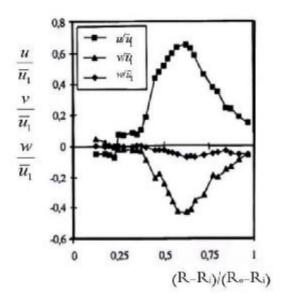

الشكل (1) مركبات السرعة عند مدخل ومخرج ناشر أسطواني

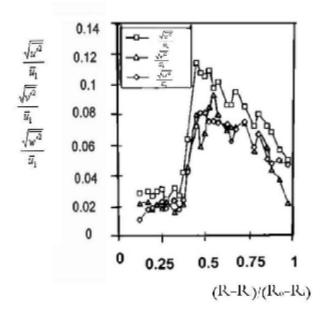

الشكل (2) المواصفات الهندسية لناشر أسطواني

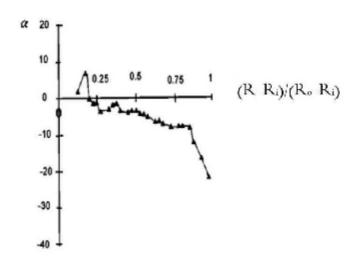

الشكل (3) عامل استرجاع الضغط الحاصل في حال ناشر مسبوق بأبيرب أسطواني أو علقة

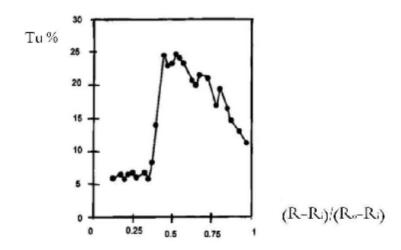

الشكل (4) منشأة قياس لناشر أسطواني مثمن


الشكل (5) التوزع القطري لمركبات السرعة الوسطى عند مدخل ناشر محوري $\overline{a}_{ov}=90^o, \overline{u}_1=62.9m/s$


الشكل (6) التوزع القطري للسرعة لتموج الاضطراب عند مدخل ناشر محوري $\overline{\alpha}_{vv} = 90^o, \overline{u}_1 = 62.9 m/s$


الشكل (7) التوزع القطري للزاوية \mathcal{Q} عند مخرج ناشر محوري $90^0 = _{uu}$


الشكل (8) التوزع القطري لكثافة الإضطراب عند مدخل ناشر محوري
$$\overline{v}_{n} = 79.7$$
 $\overline{a}_{nr} = 90^{\circ}$


الشكل (9) التوزع القطري لمركبات السرعة الوسطى المحورية والقطرية والمحاسبة عند مخرج الناشر $\overline{a}_{av} = 90^{\circ}, \overline{a}_{1} = 62.9 m/s$

الشكل (10) التوزع القطري لسرعة الاضطراب عند مخرج الناشر المحوري $\overline{\alpha}_{nr}=90^{0}, \overline{a}_{1}-62.9m/s$

 $\overline{a}_{ar} = 90^0$ النوزع الفطري للزاوية α عند غرج ناشر محوري (11) النوزع الفطري للزاوية الم

الشكل (12) التوزع القطري لكناهة الإضطراب عند مخرج ناشر محوري $\overline{v}_m=23.2mI$ s $\overline{a}_{w}=90^0$

	جع:	لهرا
•••••	•••••	•••••

- 1-**Dovzhik, S.A.,et Kartavenko, V.M.,** Measurement of the Effect of Flow Swirl on the Efficiency of Annular Ducts and Exhayst Nozzles of Axial Turbomachines, Fluid Mechanics-Soviet Research, Vol.4, No. 4, July-August 1975, pp. 156-172.
- 2-Lohmann, R.P., Markowski, S.J., Brookman, E.T., Swirling Flow Through Annular Diffusers With Conical Walls, ASME Journal of Fluids Engineering, Vol. 101, June 1979, pp. 224-229.
- 3- Sovran G et Klomp E.D- Experimentally Determined Optimum Geometries for Rectilinear Diffusers with Rectangular, Conical or Annular Cross-Section, Fluid Mechanics of Internal Flow. (Proceedings of the Symposium on the Fluid Mechanics of Internal Flow, General Motors Research Laboratories, Warren, Michigan, 1965), (Fd. Sovran G.), 1967, pp. 270-319.
- 4- **Schiestel, R.,** Modélisation et simulation des écoulements turbulents, 1^e édition, Hermès 1993.
- 5- **B. Djebedjian**, Étude de l'écoulement tridimensionnel dans un échappement axial de turbine à vapeur, thèse, Paris 1997.
- 6-**Zierer, T**., Experimental Investigation of the Flow in Diffusers Behind an Axial Flow Compressor, ASME journal of Turbomachinery, Vol. 117, April 1995, pp. 231-239. Aussi, ASME Paper No. 93-GT-347, 1993.
- 7- Ozcan, O., Johnson, D.A. et Simpson, R.L., Comment on Weks of Three Axisymmetric Bodies at Zero Angle of Attack", AIAA Journal, Vol. 33, No. 3, 1995, pp. 569-570.