تطوير نماذج التنبؤ بالسرعة العملية على الطرق المركزية ذات الحارتين باتجاهين للحركة

الدكتور فادي كنعان ألا الدكتور أكرم رستم ألا الدكتور أكرم رستم ألا الكريم ميّا ألا ألا الكريم ميّا ألا الكريم ا

(تاريخ الإيداع 17 / 5 / 2012. قُبِل للنشر في 22/ 7 / 2012)

□ ملخّص □

إن اختلاف سرعة القيادة بين العناصر المتعاقبة للطريق يعتبر من أهم المسببات الأساسية للحوادث المرورية، لذا يهدف البحث إلى إيجاد المعادلات التنبؤية بالسرعة العملية V_{85} للعربات، في مناطق المنعطفات الأفقية والاستقامات وذلك على الطرق المركزية ذات الحارتين باتجاهين.

أجريت القياسات الحقلية للسرعة لأكثر من 7500 مركبة على (47) منعطفاً أفقياً و (24) استقامة واقعة على طريقي الساحل-الغاب واللاذقية-بانياس.

تم إيجاد معادلات الانحدار التي تعطي قيمة السرعة العملية بالعلاقة مع نصف قطر المنعطف الأفقي R من خلال دراسة قيم معامل التحديد \mathbb{R}^2 للمعادلات التي تربط بين $(\mathbb{R}^2 \& V_{85})$ ، $(\mathbb{R}^2 \& V_{85})$ ، وبناء على ذلك تم اعتماد المعادلة التنبؤية التالية: $(\sqrt{R} \& V_{85})$ وبناء على ذلك تم اعتماد المعادلة التنبؤية التالية: $V_{85} = 1.428 \times \sqrt{R} + 36.08$

تم تطبيق اختبار (Chi-square test) إذ أكد دقة المعادلة المستنتجة.

تم دراسة تباين السرعة العملية V_{85} بين العناصر الهندسية المتتالية (استقامة-منعطف أو منعطفين متتالين) على الطريقين المدروسين وتقييمهما وفق معابير السلامة المرورية.

الكلمات المفتاحية: السرعة العملية V_{85} السرعة التنبؤية – الطرق ذات الحارتين باتجاهين – المنعطف الأفقي – معايير السلامة – نماذج التراجع.

^{*} مدرس - قسم هندسة النقل والمواصلات - كلية الهندسة المدنية - جامعة تشرين - اللاذقية - سورية.

^{**} أستاذ مساعد - قسم هندسة النقل والمواصلات -كلية الهندسة المدنية - جامعة تشرين - اللاذقية - سورية

^{**} طالبة دراسات عليا (ماجستير) - قسم هندسة النقل والمواصلات - كلية الهندسة المدنية -جامعة تشرين - اللاذقية - سورية.

مجلة جامعة تشرين للبحوث والدراسات العلمية _ سلسلة العلوم الهندسية المجلد (34) العدد (34) العدد (34) Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Vol. (34) No. (4) 2012

Developing Operating Speed Prediction Models on Two Lane Highways for Central Roads

Dr. Fadi kanan^{*}
Dr. Akram Rustom^{**}
Samar Meya^{***}

(Received 17 / 5 / 2012. Accepted 22 / 7 / 2012)

\square ABSTRACT \square

The variation of the vehicle driving speed between successive alignment elements is one of the main causes of accidents. The objective of this study is to develop speed prediction equations on two-lane highways for central roads.

The speed of more than 7500 vehicles was measured during this study and collected at (47) curves and (24) straights on two central roads (Sahel-Ghab and Lattakia- Banias).

In this search, we have concluded the regression equations that give the correlation between the operating speed (V₈₅) and curve radius (R), by studying the determination factor values, we have found the variable (\sqrt{R}) has the largest value (R^2 =0.84) and the considered equation is:

$$V_{85} = 1.428\sqrt{R} + 36.08$$

A Chi-square test was performed to assess the goodness-of-fit of the equation developed to predict 85th percentile curve speed. The variance of speeds between the successive geometric elements was performed to evaluate the road according to safety criterion.

Keywords: Operating Speed V₈₅, Prediction Speed, Two-Lane Highway, Horizontal Curve, Safety Criterion, Regression Models.

^{*}Assitstant Professor, Department of Transportation Engineering, Faculty of Civil Engineering, Tishreen University, Lattakia, Syria

^{**}Associate Professor, Department of Transportation Engineering, Faculty of Civil Engineering, Tishreen University, Lattakia, Syria

^{****}Postgraduate Student, Department of Transportation Engineering, Faculty of Civil Engineering, Tishreen University, Lattakia, Syria.

مقدمة:

يتم تقييم الطرق حسب معايير السلامة المرورية التي تعتبر شرطاً أساسياً يجب مراعاته منذ المراحل الأولى للتصميم، وقد أظهرت الأبحاث في بلدان أوروبا الغربية أن الاختلاف في سرعة القيادة بين عناصر المسار المتتالية يعتبر من المسببات الأساسية للحوادث على الطرق، كما أن الحوادث على الطرق المركزية هو أكثر تأثراً بعدم توافق عناصر التخطيط [1].

إن التصميم المتجانس للطرق المركزية ذات الحارتين باتجاهين، بوصفها خطوطاً انسيابية يؤدي إلى تجنب التغيرات غير المرغوبة في سرعة القيادة، إذ تتوافق المعالم الهندسية مع توقعات السائقين، وتمكنهم من التحكم بقيادة عرباتهم، وارتكابهم أخطاء أقل [2].

أكد الاتحاد العالمي للطرق (PIRAC) أن الحوادث على المنعطفات الأفقية تكون أكثر تكراراً بـ (4-1.5) مرة منها على الاستقامات، وأن العدد الأعظم من الحوادث يحصل على المنعطفات الأفقية ذات أنصاف الأقطار الأقل من 400 م، وأن نسبة (30-25)% من الحوادث المميتة تحدث على المنعطفات الأفقية [3]، وهذا يظهر الضعف في الاعتماد الكامل على طريقة السرعة التصميمية كونها تعتمد سرعة واحدة على كامل المسار إذ تهمل تباين سرعة العربة بين الاستقامة والمنعطف. فإذا كانت الاستقامة طويلة يمكن أن يصل السائقون لسرعات أعلى من السرعة التصميمية في نهاية الاستقامة و بداية المنعطف الذي يليها، كما أن اختلاف مستوى السلامة المرورية على المنعطفات ذات أنصاف الأقطار المتساوية يؤكد أن جودة التصميم وتجانسه، يعتمد بالدرجة الأولى على التوافق بين عناصر التخطيط والمستند بدراسته على السرعة العملية 85 على مقاطع الطرق [2].

عرف الآشتو السرعة العملية V_{85} بأنها: سرعة قيادة السائقين لعرباتهم ضمن ظروف الجريان الحر، وهي نسبة V_{85} من توزع السرعات المراقبة عند موقع معين، وهذه السرعة مرتبطة بالموقع والخصائص الهندسية للطريق[4].

أهمية البحث وأهدافه:

تنبع أهمية البحث في إدخال مفهوم السرعة العملية V_{85} للمشاريع حديثة التصميم وللطرق المركزية ذات الحارتين باتجاهين، أو إعادة تصميم أجزاء منها بغية التقليل من الحوادث المرورية التي تشهدها هذه الطرق، والتوصل إلى معايير التصميم الآمن والمتجانس من خلال:

- إيجاد معادلات التراجع (الانحدار) التتبؤية بالسرعة العملية ٧٤٥، من خلال قياس سرعة المركبات عند المنعطفات الأفقية، وربط بيانات السرعة بالبارامترات الهندسية (نصف قطر المنعطف الأفقى) للطريق.
- دراسة تباین السرعة بین المعالم الهندسیة المتعاقبة (استقامة-منعطف أو منعطفین متتالین) وتقییمها وفق
 معابیر السلامة، بهدف تطویر منهجیة لتحدید مستوی السلامة المروریة علی مقاطع الطرق.

طرائق البحث ومواده:

1. اختيار موقع البحث:

جمعت البيانات على طرق مركزية ذات حارتين باتجاهين للحركة في محافظة اللاذقية، عملية اختيار الموقع لم تكن عشوائية إنما مرتبطة بقاعدة البيانات المتوفرة لدى وزارة النقل والمؤسسة العامة للمواصلات الطرقية. لم تتوفر لنا بيانات كافية عن هذا الصنف من الطرق كونها طرقاً قديمة.

تم اختيار طريق اللاذقية – بانياس القديم لتوفر المخططات الرقمية لمشروع تحديث الطريق المنجز من قبل الشركة العامة للدراسات والاستشارات الفنية ولمسافة (15.562 كم) من الطريق، كما تم اختيار طريق الساحل الغاب لأهميته طريقاً مركزياً رئيساً ذا سرعات عالية يصل بين محافظتي اللاذقية وحماه. تم الحصول على بياناته الهندسية باستخدام برنامجي (AutoCad 2010 & Google Earth). يوضح الشكل (1) خارطة مواقع الطرق المدروسة والجدول (1) مواصفات تلك الطرق.

الشكل(1) خارطة لمواقع الطرق المدروسة

في المدروسة	مواصفات الطرؤ	(1)	الجدول

الطول الكلي	V d کم/سا	عرض البانكيت م	عرض القارعة م	التصنيف الوظيفي التصميمي	التصنيف الوظيفي الإداري	المنطقة	الطريق
38	60	1-2	6-8	درجة أولى	رئيسياً يصل بين	ريفية سهلية	اللاذقية-بانياس
28	70	2.75	8	درجة أولى	مراكز المحافظات	ريفية جبلية	الساحل-الغاب

جمع البيانات الهندسية للطرق المدروسة:

طریق اللاذقیة – بانیاس القدیم:

نبين في الشكل رقم (1) موقع الطريق ومسقطه الأفقي، وتتضمن المخططات الرقمية لطريق اللاذقية – بانياس القديم المسار الحالي ودراسة التوسيع وذلك على جزء من الطريق يبلغ طوله (15.562كم) ويبدأ من تقاطع مفرق عين شقاق إلى عقدة حريصون [8]، يمكن من خلال هذه المخططات الحصول على كافة العناصر الأفقية (نصف قطر المنعطف الأفقي، طول المنعطف، أطوال الاستقامات) كما يبين الجدول (2).

isel p _i
اسا P ₂
بنه P ₃
اسن P ₄
من ہ P ₅
اسن P ₆
من ہ P ₇
اسن P ₈
د ن م P ₉
اسن
من ہ P ₁₁
اسن
منع P ₁₃
اسن P ₁₄
منع الم
اسن
من ہ P ₁₇
اسن P ₁₈
منع P ₁₉
اسنا الع

الجدول(2) العناصر الهندسية المتتالية على طريق اللاذقية - بانياس القديم

• طريق الساحل – الغاب:

تم الحصول على البيانات الهندسية لطريق الساحل - الغاب بسبب عدم وجود مخططات كما يلي:

استخدام برنامج Google Earth لأخذ صور جوية متتالية لمسار الطريق.

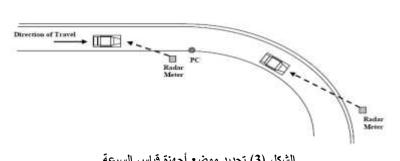
oبالاستعانة ببعض الأبعاد الحقيقية الواقعية التي تم قياسها حقلياً، تمّ معالجة هذه الصور بواسطة برنامج AutoCAD وتركيبها لتشكل مساراً بأبعاد حقيقية حقلية.

○إلباس هذا الطريق من خلال أوامر برنامج AutoCAD باستقامات ومنحنيات تمكننا من الحصول على مخطط أفقي كامل ودقيق للطريق (نصف قطر المنعطف R، طول المنعطف على عرض الطريق، أطوال الاستقامات LC) كما يبين الشكل(2).

الشكل (2) معالجة الصور الجوية ببرنامج (AutoCAD2010) لاستنتاج العناصر الهندسية على طريق الساحل الغاب

من المخطط الناتج نستخرج العناصر الأفقية لطريق الساحل – الغاب، وذلك اعتباراً من قرية كرم غصونة حتى مفرق عين شقاق، ويكون الطول الكلي المدروس من الطريق حوالي (15.61 كم) كما يبين الجدول (3).

الجدول(3) العناصر الهندسية المتتالية على طريق الساحل الغاب


R(m)	L(m)	العنصر	Si	R(m)	L(m)	العنصر	Si
120	75	منعطف	S ₂₉	468	87	منعطف	S_1
∞	76	استقامة	S ₃₀	8	193	استقامة	S_2
51	105	منعطف	S ₃₁	600	203	منعطف	S_3
∞	763	استقامة	S ₃₂	8	207	استقامة	S ₄
126	70	منعطف	S ₃₃	236	250	منعطف	S ₅
∞	64	استقامة	S ₃₄	8	76	استقامة	S_6
75	83	منعطف	S ₃₅	134	45	منعطف	S ₇
∞	84	استقامة	S ₃₆	8	58	استقامة	S ₈
251	112	منعطف	S ₃₇	73	50	منعطف	S_9
∞	770	استقامة	S ₃₈	8	44	استقامة	S ₁₀
1008	201	منعطف	S ₃₉	273	275	منعطف	S ₁₁

∞	212	استقامة	S ₄₀	∞	207	استقامة	S_{12}
1130	509	منعطف	S ₄₁	274	122	منعطف	S ₁₃
∞	327	استقامة	S ₄₂	∞	400	استقامة	S ₁₄
1156	534	منعطف	S ₄₃	251	104	منعطف	S ₁₅
∞	3100	استقامة	S ₄₄	∞	133	استقامة	S ₁₆
970	468	منعطف	S ₄₅	70	50	منعطف	S ₁₇
∞	1189	استقامة	S ₄₆	∞	42	استقامة	S ₁₈
1175	411	منعطف	S ₄₇	37	94	منعطف	S ₁₉
∞	285	استقامة	S ₄₈	∞	38	استقامة	S_{20}
620	428	منعطف	S ₄₉	57	60	منعطف	S ₂₁
∞	545	استقامة	S ₅₀	∞	63	استقامة	S_{22}
1355	315	منعطف	S ₅₁	54	166	منعطف	S ₂₃
∞	583	استقامة	S ₅₂	∞	295	استقامة	S ₂₄
1150	240	منعطف	S ₅₃	300	78	منعطف	S ₂₅
∞	193	استقامة	S ₅₄	∞	96	استقامة	S ₂₆
336	182	منعطف	S ₅₅	90	87	منعطف	S ₂₇
∞	114	استقامة	S ₅₆	∞	50	استقامة	S ₂₈

3. جمع البيانات الحقلية:

تم العمل حقلياً وفق الخطوات التالية:

- 1. تسجيل فيديو يصور المسار الكامل للطريق المدروس.
- 2. قياس عرض الطريق المعبد الكلي عند كل موقع مدروس، لاستخدامها في الدراسة التحليلية، والتحقق من دقة الصور الجوية.
- 3. من المخططات المتوفرة والمستتتجة نستخرج العناصر الأفقية للطريق الداخلة في الدراسة، ونحدد عملياً المواقع التي سيتم فيها القياس الحقلي للسرعة (منتصف المنعطف الأفقي ومنتصف الاستقامة السابقة) ويبين الشكل (3) موقع القياس حقلياً بالاستعانة بتسجيل الفيديو والصور الجوية والمخططات.

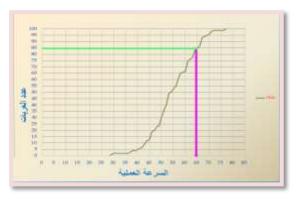
الشكل (3) تحديد موضع أجهزة قياس السرعة

4. قياس السرعة العملية للمركبات عند كل موقع:

الأجهزة المستخدمة:

- عند بدء العمل الحقلي تم استخدام جهاز (الرادار المحمول) الذي يقيس سرعات تصل إلى (280 كم/سا) مسافة الالتقاط له 80 م ونسبة الخطأ 0.1%، والمأخوذ من فرع المرور في محافظة اللاذقية، وهو جهاز يدوي تم استخدامه بالاستعانة بشرطي مرور لقياس السرعة على طريق اللاذقية بانياس القديم.
- في المرحلة الثانية، تم استخدام جهاز (Via Falcon Truck) المأخوذ من كلية الهندسة المدنية بجامعة تشرين لقياس السرعة على طريق الساحل الغاب، وفي مرحلة التحقق من النتائج على كلا الطريقين.

يتم قياس السرعة العملية للعربات في ظروف طقس جاف وخلال النهار، وفي أوقات خارج أوقات الذروة، في وقت سير العربات ضمن ظروف الجريان الحر، بمعدل 100عربة على الأقل عند كل موقع. يوضع الجهاز إذ يمكن رؤية النقطة المحددة التي نود قياس السرعة عندها ويجب أن يكون مخفياً قدر الإمكان لأخذ قراءة السرعة من دون أن يكون السائقون متأثرين بها [5]، كما يبين الشكلان (4) و (5). يتم قياس السرعة لاتجاه واحد (مسرب واحد) على كل طريق مدروس؛ فعلى طريق اللاذقية – بانياس القديم تم قياس سرعة العربات المتنقلة من بانياس والأرياف إلى جبلة، وعلى طريق الساحل – الغاب تم قياس سرعة العربات المتنقلة من الأرياف إلى جبلة.

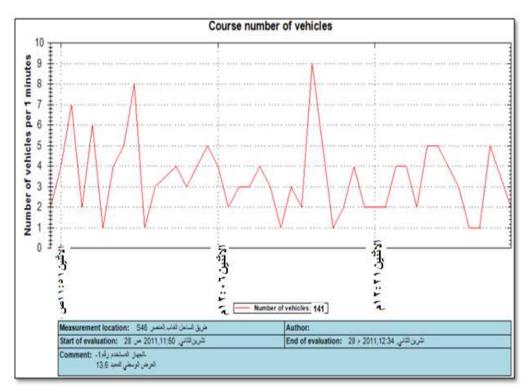

الشكل (5) توضع جهاز (الرادار المحمول)

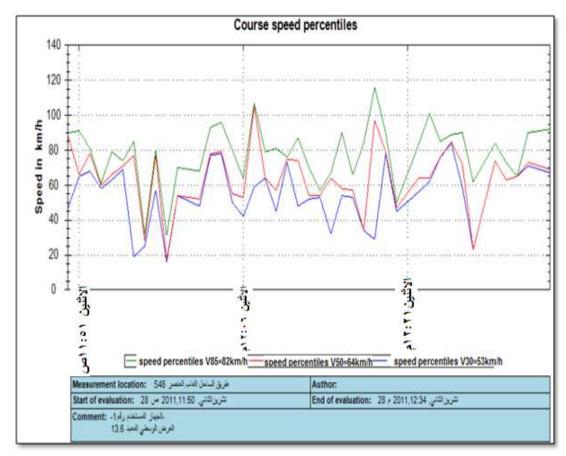
الشكل(4) توضع جهاز (Via Falcon Truck)

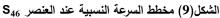
4. الدراسة التحليلية للبيانات:

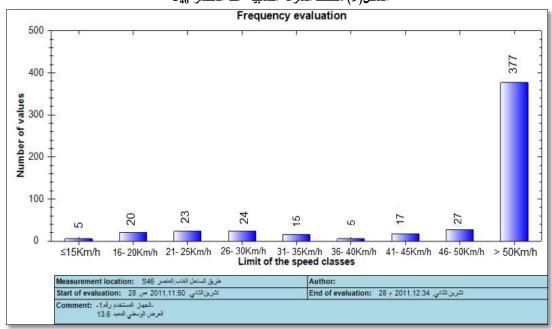
• إيجاد قيمة السرعة عند كل موقع على طريق اللاذقية- بانياس القديم:

تم استخدام الجهاز الراداري المحمول، أما طريقة عرض البيانات فكانت على شكل صور يظهر في الصورة تاريخ القياس، وتوقيته، والسرعة العملية للمركبة ففي الشكل (6) السرعة العملية للمركبة (88 كم/سا). تم قراءة القياس لمائة مركبة على الأقل عند كل موقع سواء كان منعطفاً أو استقامة مستقلة، وتعتبر الاستقامة مستقلة عندما يبلغ طولها أكبر من 200م [2]، ثم يتم قراءة قيمة السرعات العملية للمركبات من الصور وباستخدام برنامج (Excel) رتبنا السرعات تصاعدياً ثم أوجدنا المنحني التراكمي لعدد العربات مقابل السرعة العملية فكانت السرعة V_{85} هي السرعة المقابلة للنسبة 85% كما يبين الشكل (7)، ثم إيجاد السرعة العملية V_{85} بهذه الطريقة عند (12) استقامة مستقلة و (12) منعطفاً أفقياً على طريق اللاذقية— بانياس القديم.


Excel برنامج V_{85} الشكل (7) إيجاد قيمة السرعة


الشكل (6)عرض البيانات بجهاز الرادار المحمول


• إيجاد قيمة السرعة عند كل موقع على طريق الساحل- الغاب:

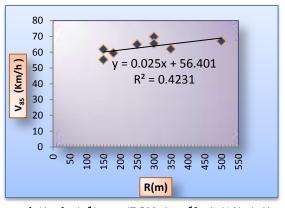

الجهاز المستخدم (Via Falcon Truck) تمَّ تنزيل البيانات من الجهاز إلى الكمبيوتر وقراءتها بواسطة برنامج خاص بالجهاز (Via Graph)، ومنه حصلنا على قيم (عدد العربات، V_{max} , V_{avr} , V_{85} , ومخطط قرصي ومخطط أعمدة لتوزع لسرعات)، تبين الأشكال (8) و (9) و (10) بعض القياسات الحقلية الناتجة عند العنصر S_{46} .

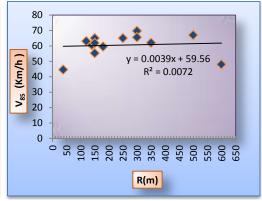
الشكل(8) مخطط عدد العربات عند العنصر الشكل(8)

الشكل(10) مخطط الأعمدة لتوزع السرعات عند العنصر الشكل (10)

النتائج والمناقشة:

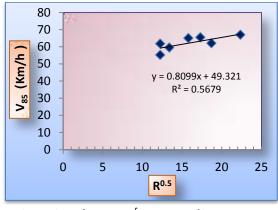
1. استتتاج المعادلات التنبؤية بالسرعة العملية على المنعطفات الأفقية:

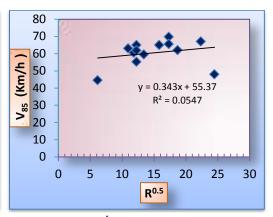

تم دراسة بيانات السرعة عند 12 منعطفاً أفقياً على طريق اللاذقية – بانياس القديم، وذلك اعتباراً من العنصر P_{13} حتى العنصر P_{39} , وكانت نتائج قياس السرعة العملية مبينة بالجدول (4).


الجدول(4)البيانات الحقلية الكلية للمنطقات الاتقية على طريق اللادلية – بانياس القديم							
V avr	V max	V_{85}	عدد العربات	R(m)	P_{i}		
47	84	69.7	100	300	P ₁₃		
53	84	62	100	350	P ₁₅		
46	65	65	100	150	P ₁₇		
52	82	60.5	100	140	P ₁₉		
42	75	44.5	100	38	P ₂₁		
48	67	55.25	100	150	P ₂₃		
56	86	65.5	100	300	P ₂₅		
40	83	48	100	600	P ₂₇		
53	91	59.5	100	180	P ₂₉		
51	79	61.8	100	150	P ₃₁		
56	72	63	100	120	P ₃₃		
57	92	67	100	500	P ₃₇		
55	77	65	100	250	P ₃₉		

الجدول(4)البيانات الحقاية الكلية للمنعطفات الأفقية على طريق اللاذقية- بانياس القديم

تم دراسة مدى تأثير بعض المنعطفات؛ التي لا تحقق شروط الدراسة (P_{11} , P_{11} , P_{12} , P_{13} , P_{15} , الأن هذه المواقع باتجاه واحد للحركة والموقع P_{27} عند مفرق رأس العين حيث لا يتحقق الجريان الحر للعربات).


باستخدام برنامج Excel أوجدنا المعادلة التنبؤية بالسرعة العملية التي تربط ($\mathbb{R}\&V_{85}$)، نماذج الانحدار (التراجع) تضمنت بالإضافة إلى نصف القطر متحولين في قيمته $(\frac{1}{R},\sqrt{R})$ ، المعيار الأساسي لاختيار النموذج التراجعي الأمثل هو قيمة معامل التحديد \mathbb{R}^2 الذي تتراوح قيمته (11) وكلما كانت قيمته أعلى دل على ارتباط أكبر بين التابع والمتحول [7]، تبين الأشكال (11)، (12)، (13) و (14) معادلات الانحدار الناتجة.

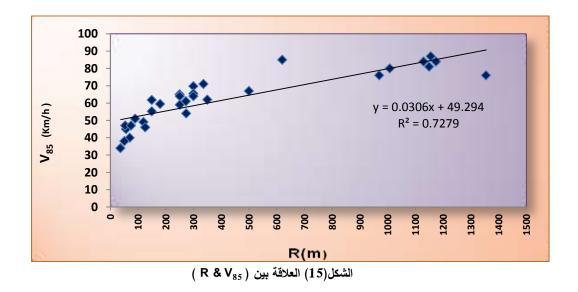


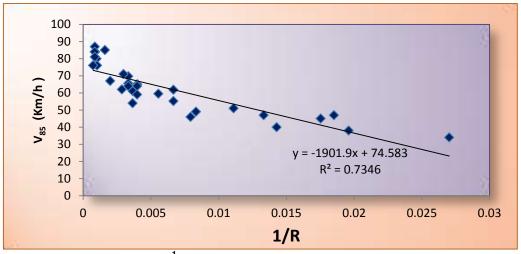
الشكل (12) العلاقة بين(R&V₈₅) بعد إزالة المواقع الشاذة

الشكل (11) العلاقة بين(R&V₈₅) للقيم الكلية

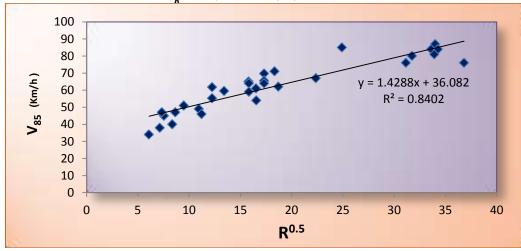
الشكل (14) العلاقة بين $\sqrt{R\&V_{85}}$) بعد إزالة المواقع الشاذة

الشكل (13) العلاقة بين $\sqrt{R\&V_{85}}$) للقيم الكلية


بمقارنة مخططات التبعثر ونماذج التراجع (الانحدار) الناتجة عنها، ومع قيمة معامل التحديد R² نجد أن العناصر (P17, P19, P21, P27, P33) تؤثر بشكل كبير على قيمة معامل التحديد، لذلك يجب أن لا تدخل في استتتاج المعادلات النهائية للتتبؤ بالسرعة العملية.


أما على طريق الساحل الغاب فقد تم دراسة بيانات السرعة على (23) منعطفاً أفقياً، وذلك اعتباراً من العنصر S₁₁ حتى العنصر S₅₅، يبين الجدول(5) نتائج القياسات الحقلية للسرعة.

لغاب	الجدول(5)البيانات الحقلية الكلية للمنعطفات الاققية على طريق الساحل-الغاب							
V avr	V max	V_{85}	عدد العربات	R(m)	S_{i}			
47	80	61	280	273	S ₁₁			
37	88	54	126	274	S_{13}			
44	86	64	100	251	S ₁₅			
29	55	40	100	70	S ₁₇			
27	87	34	101	37	S ₁₉			
35	54	45	100	57	S_{21}			
36	54	47	136	54	S ₂₃			
50	91	64	202	300	S ₂₅			


39	89	51	102	90	S_{27}
38	63	49	108	120	S ₂₉
30	47	38	121	51	S ₃₁
34	61	46	102	126	S ₃₃
37	58	47	122	75	S_{35}
47	66	59	109	251	S ₃₇
59	103	80	107	1008	S ₃₉
66	110	84	103	1130	S_{41}
63	108	87	102	1156	S_{43}
54	130	76	101	970	S ₄₅
66	111	84	104	1175	S ₄₇
63	120	85	101	620	S ₄₉
56	117	76	149	1355	S ₅₁
62	115	81	136	1150	S ₅₃
48	88	71	140	336	S ₅₅

تم إيجاد المعادلات التراجعية للتنبؤ بالسرعة العملية من مخططات التبعثر باستخدام برنامج وذلك له (31) منعطفاً منها: (8) منعطفات على طريق اللاذقية—بانياس القديم و (23) منعطفاً على طريق الساحل—الغاب، وكانت نتائج النماذج التراجعية كما هو مبين في الأشكال (15)، (16)، (16)، كما يبين الجدول (6) المعادلات الناتجة بين التابع V_{85} والمتحولات V_{85} وقيم معاملات التحديد.

 $(\frac{1}{8} \& V_{85})$ العلاقة بين (16) العلاقة

 $(\sqrt{R}~\&V_{85})$ العلاقة بين (17) العلاقة

الجدول (6) المعادلات التنبؤية المستنتجة

عدد المنعطفات	R ²	المعادلة التتبؤية	النموذج التراجعي التنبؤي
	0.727	$V_{85} = 0.03 * R + 49.29$	R & V ₈₅
31	0.734	$V_{85} = \frac{-1901}{R} + 74.58$	$\frac{1}{R}$ & V ₈₅
	0.840	$V_{85} = 1.428\sqrt{R} + 36.08$	\sqrt{R} & V_{85}

نلاحظ أن معامل التحديد الأكبر (R2=0.84) وبالتالي المعادلة المعتمدة للتنبؤ بالسرعة العملية:

$$V_{85} = 1.428\sqrt{R} + 36.08$$

2. التحقق من صحة المعادلة المستنتجة:

تم التحقق من دقة المعادلة المستنتجة من خلال دراسة قيم السرعة العملية المراقبة على (11) منعطفاً أفقياً منها: (6) منعطفات على طريق اللاذقية – بانياس القديم اعتباراً من العنصر P_1 حتى العنصر P_1 و (5) منعطفات على طريق اللاذقية – بانياس القديم S_1 حتى العنصر S_1 حتى العنصر S_1 مناون قيم السرعة على طريق الساحل – الغاب اعتباراً من العنصر S_1 حتى العنصر وكا حتى العنصر S_1 حتى العنصر S_1

العملية المراقبة V_{085} مع قيم السرعة المحسوبة V_{P85} من المعادلة التنبؤية المعتمدة، المقارنة تتم من خلال إيجاد قيمة متوسط الاختلاف المطلق ($V_{P85} - V_{O85} - V_{O85}$):

$$X^{2} = \sum_{i=1}^{n} \frac{(V_{P85} - V_{O85})^{2}}{V_{P85}}$$

ملية التنبؤية ٧٥٥٥	ارنتها مع السرعة ال	المراقبة ء٥٥٥ ومق	السرعة العملية	الحدول (7) قيم

$ V_{P85} - V_{O85} $	$\frac{(V_{P85} - V_{O85})^2}{V_{P85}}$	V _{P85} کم/سا	V _{O85} کم/سا	عدد العربات	R م	العنصر
7.1429	0.94234	54.1429	47	121	160	P ₁
7.7954	0.967718	62.7954	55	112	350	P_3
8.5686	1.253588	58.5686	50	128	250	P_5
3.22	0.239898	43.22	40	117	25	P_7
1.6811	0.059271	47.6811	46	99	66	P_9
2.01	0.0594	68.01	66	130	500	P ₁₁
1.05	0.014126	78.05	77	141	468	S_1
2.0587	0.059644	71.0587	69	105	600	S_3
4.0173	0.27817	58.0173	54	115	236	S_5
8.61029	1.409175	52.61029	44	119	134	S_7
8.2808	1.420267	48.2808	40	95	73	S_9
MAE=4.95	$X^2 = 6.7$					

إن قيمة X^2 المحسوبة باختبار (Chi-Square Test) أصغر من القيمة الحدية الحرجة المقابلة لمستوى ثقة (X^2) المحسوبة باختبار ((X_{cri5}) وبالتالي لا يوجد تباين إحصائي مهم بين القيم التنبؤية والقيم المحسوبة، مما يؤكد صحة المعادلة المستتجة [2].

قيمة متوسط الاختلاف المطلق المحسوب ((S_7,S_9) : نلاحظ من الجدول ((T_7,S_9)) أن قيمة متوسط الاختلاف في قيمة السرعة تتجاوز (T_7,S_9) عيد لكون الموقعين يقعان ضمن تجمع سكاني وبالتالي يؤدي الله نقصان سرعة المركبات العملية، المواقع ((T_7,P_1,P_1)) قيم الاختلاف في قيمة السرعة تتجاوز (T_7,S_9) ، بينما تظهر وجود مفارق وعوائق تجعل العربات لا تسير ضمن شروط الجريان الحر كما هو مبين في الشكل ((T_7,S_9))، بينما تظهر في الشكل ((T_7,S_9)) صور لبعض المواقع التي تحقق شروط الجريان الحر أعطت تبايناً بسيطاً بين قيمة السرعة المحسوبة والقيمة المراقبة.

الشكل (18) صور لبعض المواقع التي لاتحقق شروط الجريان الحر

الشكل (19) صور لبعض المواقع التي تحقق شروط الجريان الحر

3. تقييم مستوى السلامة على الطرق:

تم دراسة الفروق في قيمة السرعة V_{85} بين العناصر المتتالية، كذلك دراسة الفرق بين السرعة العملية والسرعة التصميمية وتقييم مستوى التصميم على أجزاء من الطرق وفق معايير السلامة [6] يوضح الجدول (8) نتائج كل منها.

الجدول (8) معايير السلامة المرورية حسب [Lamm et al.2007]

	مستوى التصميم				
سيئ	مقبول	ختر	السلامة		
$ V_{85i} - V_d > 20$	$10 \le V_{85i} - V_d \le 20$	$ V_{85i} - V_d \le 10$	1		
$ V_{85i} - V_{85i+1} > 20$	$10 \le V_{85i} - V_{85i+1} \le 20$	$ V_{85i} - V_{85i+1} \le 10$	11		

يوضح الجدول رقم (9) نتائج تقييم مستوى التصميم وفق معايير السلامة على طريق اللاذقية-بانياس القديم.

الجدول(9)تقييم مستوى التصميم على طريق اللاذقية _ بانياس القديم

II	I	V_{85i} - V_d	$V_{85i}-V_{85i+1}$	V_{85}	R(m)	L (m)	العنصر	i
مقبول		14		46	66	45	منعطف	P_9
مقبول	سيئ	9	23	69	∞	575	استقامة	P_{10}
جيد	ختر	6	3	66	500	60.6	منعطف	P ₁₁
سيئ	مقبول	23	17	83	∞	2458	استقامة	P ₁₂
جيد	مقبول	9.7	13.3	69.7	300	70.5	منعطف	P ₁₃
مقبول	ختر	15	5.3	75	∞	450	استقامة	P ₁₄
جيد	مقبول	2	13	62	350	69.6	منعطف	P ₁₅
مقبول	مقبول	15	13	75	∞	837	استقامة	P ₁₆
جيد	مقبول	0.5	14.5	60.5	200	69	منعطف	P ₁₇
جيد	ختر	0.5	0	60.5	∞	57	استقامة	P ₁₈
جيد	ختر	0.5	0	60.5	150	80.5	منعطف	P ₁₉
جيد	ختر	0.5	0	60.5	∞	21	استقامة	P ₂₀
جيد	ختر	0.5	0	60.5	140	60.5	منعطف	P ₂₁
مقبول	مقبول	11.5	11	71.5	∞	1136	استقامة	P ₂₂
مقبول	سيئ	15.5	27	44.5	38	34.5	منعطف	P ₂₃

ختر	مقبول	0.8	16.3	60.8	∞	352	استقامة	P ₂₄
ختر	ختر	4.75	5.55	55.25	150	26	منعطف	P ₂₅
مقبول	مقبول	14.4	19.15	74.4	∞	376	استقامة	P ₂₆
ختر	ختر	5.5	8.9	65.5	300	106	منعطف	P ₂₇
مقبول	ختر	15	9.5	75	∞	913	استقامة	P ₂₈
مقبول	سيئ	12	27	48	600	81	منعطف	P ₂₉
مقبول	ختر	12	0	48	∞	87	استقامة	P ₃₀
ختر	مقبول	0.5	11.5	59.5	180	62	منعطف	P ₃₁
مقبول	مقبول	12	12.5	72	∞	741	استقامة	P ₃₂
ختر	مقبول	1.8	10.2	61.8	150	18	منعطف	P ₃₃
ختد	ختر	10	8.2	70	∞	474	استقامة	P ₃₄
ختر	ختر	3	7	63	120	57.6	منعطف	P ₃₅
مقبول	مقبول	18	15	78	∞	1818.6	استقامة	P ₃₆
جيد	مقبول	7	11	67	500	37.8	منعطف	P ₃₇
مقبول	ختر	14.5	7.5	74.5	∞	1162.4	استقامة	P ₃₈
جيد	ختر	5	9.5	65	250	73.5	منعطف	P ₃₉
جيد	ختر	4.5	0.5	64.5	∞	1718	استقامة	P ₄₀

الاستنتاجات والتوصيات:

الاستنتاجات:

شملت الدراسة 15.610كم من طريق الساحل – الغاب؛ من قرية كرم غصونة حتى نقاطع رأس العين، و شملت الدراسة 15.562كم على طريق اللاذقية – بانياس القديم بدء من حريصون حتى نقاطع مفرق عين شقاق، تم قياس السرعة العملية لأكثر من 7500 مركبة على 47 منعطفاً و 24 استقامة خلال الفترة بين تشرين أول 2011 حتى نيسان 2012 وتوصلنا للنتائج التالية:

• أوجدنا المعادلة التنبؤية التي تعطي قيمة السرعة العملية المتوقعة للمركبات على المنعطفات الأفقية بالعلاقة مع نصف القطر، فمن دراسة معامل الارتباط بين كل من (\overline{R}, \sqrt{R}) وقيمة (V_{85}) وجدنا أن المتحول (\overline{R}, \sqrt{R}) وغيمة لمعامل الارتباط والمعادلة المستنتجة:

$$V_{85} = 1.428\sqrt{R} + 36.08$$

- لا تشمل المعادلة المستنتجة المواقع ذات الاتجاه الواحد للحركة ولا تشمل مواقع التقاطعات التي أعطت قيماً منخفضة جداً لمعامل التحديد.
- المعادلة المستنتجة تعطي قيماً أدق للسرعة في حال عدم وجود عوائق أو عدم توضع المنعطف في مكان ذي تجمع سكاني.

• تم تقييم مستوى التصميم لجزء من طريق اللاذقية − بانياس القديم وطريق الساحل − الغاب وفق معايير
 السلامة المرورية حسب [Lamm et al.2007].

التوصيات:

- ضرورة إدخال مفهوم السرعة العملية في التصميم الهندسي للطرق، لأنه يؤدي إلى تجنب التغيرات غير المرغوبة في قيمة السرعة بين العناصر المتعاقبة.
- استخدام المعادلة المستنجة عند إعادة تصميم منعطفات على طرق ذات حارتين باتجاهين للحصول على القيم المثلى لنصف القطر، من أجل مجال معين للسرعة تراعى فيها العناصر السابقة والتالية للمنعطف.
- ضرورة وضع الشاخصات المرورية التحذيرية عند المنعطفات ، وتحديد قيمة السرعة على المنعطف من خلال الاستفادة من السرعة العملية المستتجة في هذا البحث.
- يفتح البحث آفاقاً واسعة لدراسة تأثير البارامترات الهندسية الأخرى على السرعة العملية، بهدف الوصول إلى معايير التصميم الآمنة للطرق ورسم مقطع السرعة (Speed Profile).

المراجع:

- 1. Su, C. W.; Cheng, M. Y.; Lin, F. Bor. 2006. Simulation-enhanced approach for ranking major transport projects, Journal of Civil Engineering and Management 12(4): 285–291.
- 2. K. Fitzpatrick, L. Elefteriadou, D.W. Harwood, J.M. Collins, J. McFadden, I.B. Anderson, R.A. Krammes, N.Irizarry, K.D. Parma, K.M. Bauer, and K. Passetti, "Speed Prediction for Two-Lane Rural Highways", Report No.FHWA RD -99-171, Federal Highways Administration, 2000.
- 3. Lamm, R.; Beck, A.; Cafiso, S.; La Cava, G. 2003. A new procedure for evaluating traffic safety on two-lane rural roads [CDROM],in Proc of the XXIInd PIARC World Road Congress.19–25 Oct, 2003, Durban, South Africa. World Road Association PIARC, 2003. 10 p.
- 4. A Policy on Geometric Design of Highways and Streets, American Association of State Highway and Transportation Officials, 4th edn. Washington, D.C.: AASHTO, 2001.
- 5. K. Fitzpatrick and J.M. Collins, "Speed-Profile Model for Two-Lane Rural Highways", Transportation Research Record No. 1737. Washington, D.C.: Transportation Research Board, 2000.
- 6. Lamm, R.; Beck, A.; Rusher, T.; Mailaender, T.; Cafiso, S.; LaCava, G. 2007. How to make two-lane rural roads safer: scientific background and guide for practical application. WIT Press, UK, 118 p. ISBN-10 1845641566.
 - 7. طيوب، محمود محمد ديب. مبادئ الإحصاء. منشورات جامعة تشرين،; الرفاعي، عبد الهادي ممدوح الاقتصاد، 2011، 297. كلية
 - 8. الشركة العامة للدراسات والاستشارات الفنية فرع المنطقة الساحلية . المذكرة الحسابية لطريق جبلة بانياس القديم. 2007, 1.