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O ABSTRACT 0O

In this paper we present a modern treatment of the optimum design procedure for a
cold formed mono-symmetrical | beam under the action of uniformly distributed load. This
problem is highly governed by different kinds of buckling constraints. As the walls of this
beam are very thin, we will consider the design constraint of the global lateral buckling in
addition to the design constraints related to the local buckling of the flanges and the web.
This constraint will be established for four cases of vertical support conditions and only
one case of lateral support condition, and as these two groups of support conditions could
be practically independent, we suppose that the shape of the lateral buckling is not altered
by the vertical displacement shape. Then, we investigate the influence of the vertical
displacement boundary conditions dictated by the type of the vertical supports on the
values of the critical lateral buckling load. The other constraints of the problem are related
to the fabrication processes. This optimum design problem will be solved using a Genetic
Algorithm program implemented using MATLAB. The test of this program constitutes an
essential part of this paper.
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Introduction:

One of the problems that the structural designer of thin-walled beams has to tackle is
its sensitivity to instability phenomena. This problem becomes more difficult when the
sections are cold formed by folding sheets or strips. In this case the designer has to define
the section using geometric variables able to describe all the formed folds. Then he has to
choose these variables in order to minimize the cost and to verify the technological and
structural constraints[1]. Among the latter, the local and global buckling constraints
become very complicated and difficult to be determined without using energy
approximation methods[2]. Regarding the complexity of these constraints, the classical
trial and error procedure of section design becomes quasi impossible and the optimum
design procedure imposes itself as the only possible way[3]. In addition the use of gradient
based methods of optimization is limited by the nonlinearity of the above mentioned
constraints; therefore, in this paper we suggest the use of more suitable Genetic Algorithm
method and show its implementation using MATLABJ[4].Then the results giving by this
algorithm will be validated by studying the variation of the cost with the span of a simple
beam under the action of uniformly transverse load having different types of supports.

Importance and aims of the paper

The main aim of this paper is to generalize previously presented procedure of the
section shape optimization [5]. This generalization concerns the possibility of dealing with
more realistic loading and with different types of vertical supports.

The secondary aim is to test the validity of our Genetic Algorithm in more practical
situations less simple than the pure bending loading used in [5].

The Methodology:

In this paper our methodology will be the same as in [5] except that here we feel it
necessary to expose our methods and assumptions used to establish the suitable critical
load expressions. In reality, as it is known, the loss of stability of thin-walled beams often
occurs through a combination of bending and torsion, even if the loading consists only of
transverse and axial loads in one plane. The basic types of such instability are the lateral
buckling of beams and the axial-torsional buckling of columns.

We start our presentation of the methodology by giving a brief introduction to the
study of the lateral buckling of a beam loaded by uniformly distributed load. We will
examine several cases of vertical support types (a,b,c,d) considered as shown in fig. 1
while the lateral support types will be the same: pin-pin.
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B Lateral support
] Vertical support

(@)

Fig. 1.Vertical & lateral support types

Two of these cases(a & d) are explicitly illustrated by a 3D sketch representing at the
left the beam before buckling and at the right the beam after it has buckled as shown in fig.

EP

Fig. 2.3D illustration of case (a), the cantilever
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Fig. 3.3D illustration of case (d), fixed-fixed beam

= Lateral buckling — critical load of the beam:

Kinematic relationships:

We introduce the increment displacement field in an arbitrary point (X,y,z), where x
indicates the considered section, as follows[2]:

wy=u—vy—wz—8w

U, =v—0z

Uy =w + 8y

where:

u,v and w are the displacements of the center of the cross section. They are functions
of x.

wis the warping function which is given for the upper flange, bottom flange and the
web respectively as follows: — 2,22 4nd o

-

0is the angle of twist. It is also a function of x.

\
Fig. 4.3D illustration of the displacement field
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From this displacement field we deduce that the 1% order approximation of the axial
normal strain at any point of the cross section is:

e,=u —v'y—w'z—8"w

and the only non-zero second order strain components are the following:

. . . N 1. .. 1 , .
g =u —v'y—w'z— 5"@—5(3' —8'z)" _5(“" +8'y)°

_ (5_‘J [a_‘] = '8 +66'z

A A
Viey = [EJ [EJ =wfg+68y

Potential energy:
Restricting ourselves to the case of a beam under initial axial force P, initial lateral
load p., initial bending moment M: and initial shear force 1.°, we can write the strain
energy of the initially stressed | beam as [2]

y
"L

S S T i .
U =J J [g £ +-Fel+ 1'__,_:;__‘__1-__3},__3){1;_4 . J Lo
. - 2 e P 5

o Y4

X o e
|:.

in which | is the length of the beam, A is the cross-section area, @~ is the initial
normal stress in the cross section, rf'_,,. and .. are the initial shear Stresses,¥..,., ¥.- are the
associated shear angles, G is the elastic shear modulus, and GJ is the torsional stiffness for
simple torsion. In the precedent expression, the strain energy associated with the stresses
..+ 0=z T,-iNthe plane of the cross section is negligible.[2]

Computing the initial and current stresses, and then performing the integral over the
section, this expression becomes:

|:.

|:.

Rl w87 W g M ’ -
u =J ——{u'.q——.q——fz——_q— — I ——(—w"I,—v'8'L)
ol A\ 2 2 2 27 I

.o B, . . - GJ .,
—.-'erg"t,"E—E[_u"_q—t:"'f_,l.— w el + B"'Im}—?jﬁ'" dx

Where the following geometric properties of the cross section A.1,,I. and I, are
respectively the area, moment of inertia about z, y and the warping moment of inertia.
The load work expression is given by:

W= J [(Tﬂz + Ap,)w + Ap v+ ﬂ’mrﬁ]dl‘ + [AM_ w'll + [AM. 8], —[(P+ AP)ulj
|:.

in which Ap,.and Ap_are small transversal distributed disturbing loads (added tothe
initial loadp.), Am.s a small perturbation representing an applied distributed
momentabout the beam axis, 43, andAM.are small moments about the z and x axes applied
at the beam ends, and APis a small disturbing incrementin the axial compressive load.

The point of application of ©_in the previous equation is at the beam centroid. If p_ is
applied on the top flange, then the integrand in this equation must be augmented by the
term - p, [%nﬁ'] because rotation 6 causes additional negative displacement 13}115':.

Regrouping the terms in the above two equations, we get the full expression for the
potential energy IT = U — IW".From this expression of the potential energy we could deduce
the differential equations and the boundary conditions as one can see in [2].The closed
solution of these equations is possible only for simple sections [6], but rather impossible
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for more complicated profiles like the I-section, so we prefer to use approximate
variational method of solution.

In the case of our problem, the lateral buckling of beams due to transversal load
function ».(x), we have (P =0, u' =0, w=0), if we let the bending moment

distribution be described as Ef,(xj = p.m({x)where m(x) is the bending moment function
for the case of the unit uniformly distributed load. The upper bound approximation of the
critical value of the load p_that causes the lateral buckling can be found using the
Raylieigh quotient expression deduced from the stability condition given in [2] , as

 [HELY + ELE"™ +6]6')dx

-ch v 8 mlx)dx
In this approximation method it's usually assumed that the shape of lateral buckling
and the angle of twist are known, but their values are dependent of two multiplicative

constants g4.4- . For all cases of support types, we will use the two expressions:
mx wx
v =gy sinTand|9= 4, sin—

'G..?EZ"

Then, for the considered cases of support types, the bending moment function m(x)
and the resulted upper bound value of the critical load p___are listed here down:

e Cantilever Beam under uniformly distributed transversal load z.: in this case from
the static equations: m(x) = }(I — x ) substituting in the above integrals we get
= lE—T .'IEI,.[EI T+ GJ17)
F(2m= —3)y - =
e Simply Supported Beam under uniformly distributed transversal load p.: in this
case from the static equations: mi{x) = }x[! — x) substituting in the above integrals we
get

'G.EE."

? =l2—1r ,'IEI,_[EI 7?4+ GJI7)
zer T Pipl e 3)y e

¢ Fixed-Pinned Beam under uniformly distributed transversal load p.: in this case
from the static equations: m{x) = _E [1 — 5?— 4“—] substituting in the above integrals
we get )

.= 48—T 1 (EI_ 7>+ GJI%)

Peor ~ i(m2 £ 12)y ¥V @

o Fixed-Fixed Beam under uniformly distributed transversal load p.: in this case
from the static equations: m{x) = —1— [1 -6 i + 6“—] substituting in the above integrals
we get

m

— 4 | " .
Peer = 72 M!Ef:l.(EfquT-— GJ1%)

The comparison between the four obtained expressions shows that the beam
resistance to the buckling load matches very well with support types.

= Statement of the optimization problem:

The optimization problem is formulated for the four previous cases as follows:

211



el el i) apenaill e ndyl) il daai 0

BESPRIP AUy dejse Agen il cand Lylals H1 e Cagilas

min f (x) = (4b + h)t
(c) 4b+h=B

(c,) 10s2350

1 b

c,) —<—<1

(cs) > <TH
L

c,) —<10

| U)H
subjectto 2]
(Cs) pP=p, plemZ O

(C6) p S pz’ pz = pcrz
(c;)) p<py P3=2——o0

(Cg) P< Py p4:2 : ‘O max.cr
Ny

Where the geometric parameters defining the optimization problem are illustrated in
the following figure.

>

‘4
-t

Fig. 5.Cross section geometric parameters
The geometrical and constructional constraints (c; — c.)are taken as in [5], while
the strength and stability constraints(c: — cz) have been modified to fit with the load and
support types as can be shown in the following table.
Tab. 1.Maximum bending moment & approximated critical lateral buckling load

Beam .mﬂ‘lﬁl' Pr.“.‘—'z
Cantil 1272 Lo’ B (EL7? + GII?
antilever /= 14272 — 3)4/ (Elm 71%)
. - 1273 f R -
Simply supported ql=/8 ﬁ (EI.(EI m=+ GJI%)
[ [ R -
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487 3 '
Fixed-Pinned /8 —— |EI(El w?+ gJi*
q ET(IT__].Q::I"\,I! E £ J'r :I

3

Fixed-Fixed gl®/12

]
|EI(EImw%+ GJI?)
+ 7"

» Numerical treatment:

As the nonlinearity of the problem is clear, it’s well known that the Genetic
Algorithm is a suitable numerical method to find the optimum solution of the problem. The
load cases and the support types considered in this problem have implied more
complicated constraints. This fact will be a good occasion to truly examine the efficiency
of the MATLAB program written and implanted by us. [5]

As it was done in the above mentioned paper, the examination of the algorithm with
the program will be done by looking at the variation of the section area (objective function)
and some of its dimensions and geometrical properties with the span for the four cases of
support types.

Results and Discussion:

The following figures show the results obtained from the mentioned program. Figure
no.6 shows the variation of the section area, considered as the objective function of the
optimization problem, with the span for the four types of support. The nonlinear variation
of this area is very well approximated by a quadratic function as one can see by the dashed
line. While the variation of t and h figs.7&8is more closer to the linear approximation. In
addition, figs. 9&10 show the variation of the section properties I_. I, with the span, the
examination of their variation shows that they are better approximated by polynomials of
even degree higher than the second degree.

All these variations and their approximations are consistent with our elementary
knowledge of strength of material .This consistency of the results gives us entire
satisfaction concerning the optimization algorithm and the written program.

Variation of section area (A) with the span
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Fig. 6.Variation of section area with the span

Objective Function (A)
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Variation of the original sheet thickness with the span
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Fig. 7.Variation of the original sheet thickness with the span
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Fig. 8.Variation of the web height with the span
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« 107 Variation of the moment of inertia(lz) with the span
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Fig.9. Variation of the moment of inertia with the span

Vbariation of the sectorial moment of inertia(lm) with the span
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Fig. 10.Variation of the sectorial moment of inertia with the span
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Conclusions and Recommendations:

In this paper we have fixed as major aims the generalization of the previously
presented procedure of the section shape optimization [5], and the validation of our
Genetic Algorithm in more practical situations less simple than the pure bending loading
used in [5]. To make the achievement of these two aims more realistic, we chose to obtain
the optimum design under the most common load case, uniformly distributed load, and
different support types for which we have been able to establish the stability criterion. The
obtained results have shown that the above mentioned major and secondary aims have
been successfully reached.

To make these results more useful to the practice engineer, it's recommended to
examine the effect of different lateral buckling shapes. In reality, these shapes reflect the
nature of real structural connections which are more and more modelized as semi-rigid
connections by researchers” community.
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