
7?=

 8332(5(العدد)03المجمد) العموم الهندسيةمجمة جامعة تشرين لمبحوث والدراسات العممية _ سمسمة

Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Vol. (30) No. (5) 2008

Design and Modeling of Systolic Array

Based on VHDL and FPGA

Dr. Hassan Al-Ahmad
*

Dr. Hasan Albustani
 **

Moatassem Ibrahim

 (Received 7 / 4 / 2008. Accepted 13 / 5 / 2008)

 ABSTRACT 

Systolic array design based on Field Programmable Gate Array (FPGA) can be

adapted to efficiently resolve a wide spectrum of computational problems; parallelism,

which is also naturally explored in systolic array and in implementing this design in FPGA,

allows the redefinition of the interconnections and operations even during run time

(dynamically).We have designed 2D systolic array architecture that implements the matrix

multiplication algorithm. A VHDL for this design is applied to Xilinx FPGA. This design

would be faster than the software of any alternative algorithm.

Keywords: Systolic Array, FPGA, VHDL, Parallel Processing, Matrix Multiplication,

Digital Synthesis, Computer Architecture, Modeling.

*
 Assistant Professor, Department of Computers and Auto-Control, Faculty of Mechanical and

Electrical Engineering, Tishreen University, Lattakia, Syria.
**

Assistant Professor, Department of Communications and Electronics, Faculty of Mechanical and

Electrical Engineering, Tishreen University, Lattakia, Syria.

Postgraduate Student, Department of Computers and Auto-Control, Faculty of Mechanical and

Electrical Engineering, Tishreen University, Lattakia, Syria.

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 7?>

 8332(5(العدد)03المجمد) العموم الهندسيةمجمة جامعة تشرين لمبحوث والدراسات العممية _ سمسمة

Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Vol. (30) No. (5) 2008

 تصميم ونمذجة المصفوفة الانقباضية
 FPGAتقنيةو VHDLلغة عمى اعتمادا

 *الدكتور حسن الأحمد

 **الدكتور حسن البستاني

 ***معتصم ابراهيم

 (30/5/2008ل لمنشر في ب ق . 8332/ 4/ 7تاريخ الإيداع)

 الممخّص 

إلؤؤؤى وضؤؤؤع حؤؤؤط ف ؤؤؤاط ل يؤؤؤ واسؤؤؤع مؤؤؤ FPGA اعتمؤؤؤاداً عمؤؤؤى تقنيؤؤؤة الؤؤؤؤ المصؤؤؤفوفة الانقباضؤؤؤيةتصؤؤؤميم يؤؤؤ د
 FPGAلم الجة التفرعية الموجودة أصلًا في المصفوفة الانقباضؤية والمححققؤة بتقنيؤة الؤؤ , حيث تسمح االمشاكط الحسابية

 بإعادة التهيئة حتى أثناء زم التشغيط)ديناميكياً(.
ثؤؤم تمؤؤذ نمذجؤؤة هؤؤذا التصؤؤميم ,لب ؤؤد تنفؤؤذ زوارزميؤؤة ضؤؤري مصؤؤفوفتي قمنؤؤا بتصؤؤميم مصؤؤفوفة انقباضؤؤية ثنائيؤؤة ا

تؤم تحقيؤا النمذجؤة عمؤى لوحؤة مصؤفوفة , و VHDLلمدارة المتكاممة ال اليؤة السؤرعة باستزدام لغة وص الكيا الصمي
 . Xilinxالبوابة القابمة لمبرمجة م عائمة

 أ زوارزمية بديمة لضري مصفوفتي .إ زم التنفيذ لهذا التصميم أسرع بكثير م أ برنامج يقوم بتنفيذ

التركيؤؤؤؤؤؤي الرقمؤؤؤؤؤؤي, بنيؤؤؤؤؤؤة م الجؤؤؤؤؤؤة التفرعيؤؤؤؤؤؤة, ضؤؤؤؤؤؤري المصؤؤؤؤؤؤفوفاذ, الالمصؤؤؤؤؤؤفوفة الانقباضؤؤؤؤؤؤية, مفتاحيااااااة الكممااااااات ال
 . FPGA, VHDL النمذجة,الحاسي,

 سورية.-اللاذقية -جامعة تشرين -كمية الهندسة الميكانيكية والكهربائية -قسم هندسة الحاسبات والتحكم الآلي -مدرس *

 سورية.-اللاذقية -جامعة تشرين -كمية الهندسة الميكانيكية والكهربائية -قسم الاتصالات والالكترونيات-مدرس**
 -جامعة تشرين -كمية الهندسة الميكانيكية والكهربائية -قسم هندسة الحاسبات والتحكم الآلي -لب دراسات عميا)ماجستير(***طا
 سورية.-اللاذقية

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

7??

Introduction:
Dealing with real-time constraints, the strong needs for shorter time-to-market and

life products are always problems in a typical System-on-chip design. FPGA prototyping is

a quick way to do a real-time simulation of the system and identify the potential problems.

It is a promising approach to overcome the traditional trade-off between flexibility and

performance in the design of computer architectures [1].The more specialized a computer

architecture is in a particular application, the faster it will be in executing this application.

On the other hand, regular architectures based on identical processing elements (PEs)

of so-called systolic array are a natural choice for application-specific implementations of

such a process; due to the development of VLSI fabrication technologies, systolic

algorithms are now being implemented as a practical hardware; so it is becoming more

important to know their design methodologies [2, 3, 4]. We have combined these two

purposes, and the result is designing a systolic array based on FPGA.

What can a systolic array do? This question is very important, and the answer is that

it is every sequential algorithm that can be transformed to a parallel version suitable for

running on array processors that execute operations in the so-called systolic manner, and

systolic array is one of solutions to the need for a highly parallel computational power. Due

to the use of matrix-multiplication algorithm in wide fields such as Digital Signal

Processing (DSP), image processing, solutions of differential comparison, non-numeric

application, and complex arithmetic operations, we shall design a 2D systolic array that

implements this algorithm.

There are several projects in systolic array such as:

1- A comparison of block-matching algorithms mapped to systolic-array

implementation [5].

2- Programming Systolic Arrays [6].

3- A Multilevel Systolic Approach for Fuzzy Inference Hardware [7].

4- An efficient Systolic Array for the Discrete Cosine Transform Based on

Prime-Factor Decomposition [8].

This research is carried out in Faculty of Mechanical and Electrical Engineering for a

whole year.

Our contributions in this research are:

1- Designing a fast-arithmetic Multiply-Accumulate (MAC) unit based on

pipeline technique and using Carry Save Adder (CSA) and Carry Lookahead Adder (CLA)

units. This design executes the arithmetic operations much faster than the nonpipelined

MAC unit.

2- Designing a control unit that verifies the synchronization of all processing

elements and considering it a global control.

3- Modeling the systolic Array architecture based on VHDL, following the

top-down methodology in designing.

Purpose and Importance of this Research
 The purpose of this research is to efficiently resolve a wide spectrum of

computational problems by implementing the systolic array architecture on FPGA.

Designers search for high performance and flexible architectures; so this research

introduces one of the most important ways to meeting them. Our research combines

different properties that are seldom found together. These properties are:

1- flexible hardware and software (i.e. FPGA technology).

2- Spatial and temporal parallelism (i.e. systolic array Architecture).

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 833

Research Methodology
 A system can be described at different levels, namely system level, RTL level, gate

level, and transistor level. System level design methodologies introduce new design flows

that are complementary to the ones provided by existing tool-sets based on Hardware

Description Languages HDLs. The methodology of reconfigurable circuits and systems is

evolving from Tinkertoy approach to an innovative parallel computing paradigm which

combines computing in time with computing in space. We have used the top-down system

level design methodology which means here describing a complete system at an abstract

level using HDLs and automated tools. Figure (1) shows the register transfer level (RTL)

and top-down methodology for a systolic array design.

Figure (1): RTL level, top-down methodology for systolic array design.

VHDL Language:
 VHDL is a language for describing digital electronic systems. It is developed

through the US government’s Very High Speed Integrated Circuits (VHSIC) program.

In VHDL, we model Hardware in the form of a programming language that contains:

1- An ENTITY being a list with specifications of all input and output pins (PORTS)

of the circuit. Its syntax is shown below[9, 10, 11]:

 ENTITY entity_name IS

 PORT(

 Port_name : signal_mode signal_type;

 Port_name : signal_mode signal_type;

 …);

 END entity_name;

2- The ARCHITECTURE being a description of how the circuit should behave

(function).

Its syntax is the following:

 ARCHITECTURE architecture_name OF entity_name IS

 [declarations]

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

837

 BEGIN

 (code)

 END architecture_name;

The architecture body can take a few forms since we can describe hardware systems

in a number of ways. They are [9]:

1. Dataflow Description: models the hardware in terms of the movement of

data over continuous time between combinational logic components such as adders,

decoders and primitive logic gates.

2. Behavioral Description: describes how the given entity behaves, given

various inputs as a function of control statements.

3. Structural Description: describes how the given entity functions, based on

physical hardware implementation.

VHDL has various data types as Variables, constants, integers, floating point, time,

characters, Booleans, standard logic, composite data types, and user defined data types.

There are two basic kinds of statement in VHDL [11, 12]:

1. Concurrent statements are used inside architectures. Concurrent statements are

executed in parallel, so they make VHDL fundamentally different from most software

languages.

Concurrent statements include the following:

 Signal assignments (selected and conditional).

 Component instantiations.

 Generate statements.

 Procedure and function calls.

 Process statements.

2. Sequential statements are used inside processes and functions, and they include:

Signal assignment, variable assignment, constant assignment, Wait, if-then-else, case,

loop, while loop, for loop and next statements.

VHDL is designed to allow the description of the structure of a hardware system.

This includes a composition of subsystems and how those subsystems interconnect. It also

allows the description of hardware systems as a system of programming terms. Finally, it

permits the simulation of a defined system based on the Hardware Description given.

Field Programmable Gate Array (FPGA)
Field Programmable Gate Arrays (FPGAs) are becoming a critical part of every

system design [1, 13]. FPGA chip generally consists of:

1.Configurable Logic Block (CLB).

2.Configurable I/O blocks.

3.Programmable interconnect.

4.Clock circuitry.

5.Programmable elements: Static RAM, Anti-fuses, and Flash.

6.Additional logic resources: Arithmetic/Logic Units (ALU), Memory, and Decoders.

The FPGA architecture based on Look-Up Table (LUT) dominates the existing

programmable chip industry, in which the basic programmable logic element is a K-input

lookup table. Most FPGAs are hierarchical in nature. For example, Altera Stratix III device

families and Xilinx Virtex-5 device families provide logic array blocks (LABs) or CLBs

that can accommodate a cluster of basic logic elements (BLEs) with fast local

interconnects.The FPGA is the latest in the family of Programmable Logic Devices

(PLDs). Figure (2) shows the structure of FPGA.

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 838

With the development of FPGAs. there are now more opportunities than ever for

implementing quite different systems. It could be used for implementing random logic and

glue logic in low volume systems with non-aggressive speed and capacity demands. If the

capacity of a single FPGA is not enough to handle the desired computation, multiple

FPGAs may be included on the board, distributing the computation among these chips. It

can be used in a much more flexible manner than standard gate arrays.

Figure (2): The structure of FPGA.

Systolic Array
A Systolic Array is a type of parallel computer architecture that consists of:

- An array of Processing Elements (PEs).

- Interconnected with localized data links.

The features that make a systolic array a distinct architecture are modularity, rhythm,

synchrony, extensibility, and pipelinebility [2, 3]. The general architecture of systolic array

is illustrated in figure (3). The term “systolic” is used because of the analogy of these

systems with the circulatory system of the human body. In the circulatory system, the heart

sends and receives a large amount of blood as a result of the frequent and rhythmic

pumping of a small amount of blood though arteries and veins; so if compared we find that

the heart in systolic computer systems would correspond to the global memory as the

source and destination of data. The arterial-venous network would similarly correspond to

processors and communication links.

Figure (3): general architecture of systolic array

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

839

Systolic Concept
A Systolic system is such a combination of an algorithm and an integrated circuit that

implements it [2, 3, 4]. It is generally classified as high-performance, special-purpose

VLSI computer system suitable for specific application requirements that must balance

intensive computations with demanding I/O bandwidths. It is a massively parallel

architecture, organized as a network of identical and relatively simple PEs, which execute

operations synchronously. Systolic algorithms address the performance requirements of

special-purpose systems by achieving significant speedup, due to parallel processing and

prevention of I/O and memory bandwidth bottleneck. Data are pumped in a rhythmic

manner from memory through the systolic array before the end result is returned to the

memory. The global clock and explicit timing delays synchronize the system.

Two Dimensional Systolic Array (Mesh-connected Array) Design
There are three types of systolic array based on its topology:

1.One dimensional systolic array (Linear Array).

2.Two dimensional systolic array (Mesh-connected Array).

3.Three dimensional systolic array.

We have designed the Two dimensional systolic array. However, the proposed arrays

of processors for this type of systolic array are [14, 15]:

1.Hexagonal array.

2.Pipelined array.

3.Semibroadcast array.

4.Broadcast array.

5.Wavefront array.

Our choice for our design is the Wavefront array topology because it represents a

well-synchronized structure.

1. Steps of Mapping Procedure

There are five steps of mapping algorithm to systolic architecture:

1. Buffer all the variables.

2. Determine the PEs functions by collecting the assignment statements in the

loop bodies into m input and n output functions {Determine dependence matrix}.

3. Find transformation (T).

4. Apply a linear reindexing transformation T.

5. Find connections between processors and the direction of data flow.

We'll apply these steps to the algorithm of multiplication of 2-by-2 matrices.

First, consider the following algorithm which represents multiplication of two 2-by-2

matrices A and B [3, 14, 15, 16]:

 for (k =1;k<=2;k++)

 for (i=1;i<=2;i++)

 for (j=1;j<=2;j++)

 C(i,j) = C(i,j) + B(k,j) * A(i,k);

Second, represent the index set for this algorithm as in table (1):

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 83:

Table (1): index set for matrix multiplication algorithm.

By applying the above mentioned steps to this algorithm:

Step one: buffering all variables:

Each index element is shown as a three-tuple (k,i,j). Note that for both index

elements (k,i,1) and (k,i,2), the same value of A(i,k) is used; that is, the value A(i,k) can be

piped on the j direction. Similarly, values B(k,j) and C(i,j) can be piped on i and k

directions, respectively. Based on these facts, the algorithm can be rewritten by introducing

buffering variables A
j+1

, B
i+1

, and C
k+1

, as follows:

 for (k =1;k<=2;k++)

 for (i=1;i<=2;i++)

 for (j=1;j<=2;j++)

 { A
j+1

(i,k) = A
j
(i,k);

 B
i+1

(k,j) =B
i
(k,j);

 C
k+1

(i,j) = C
k
(i,j) + B

i
(k,j) * A

j
(i,k); }.

Step two: Determine dependce matrix:

The set of data dependence vectors can be found by equating indices of all possible

pairs of generated and used variables. So the dependence matrix D= [d1| d2| d3] can be

expressed as:

Step three: Find transformation (T):

we are looking for a transformation T that is of the form:

 and Let:

The condition 0Πd i  (for i=1, 2, 3) implies, and to reduce the turnaround time,

we try to choose the smallest values for t11, t12, and t13 such as:

 t11 = t12 = t13 =1; that is .

Our choice of S will determine the interconnection of the processors.

A large number of possibilities exist, each leading to different network geometries.





















100

010

001

ddd

D

321

0Πd
S

Π
T i 








 Where



















333231

232221

131211

ttt

ttt

ttt

T

(1,1,1)Π 

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

83;

our option is:

In general, for the multiplication of two n-by-n matrices, 2
n
 PEs are needed thus for

our design, four PEs are needed. The interconnection between these processors is defined

by:

Where x and y refer to the movement of the variable along the direction i and j,

respectively. Thus

Step four: Apply a linear reindexing transformation (T):

When we apply a linear reindexing transformation, table (2) will result:

Table (2): reindexing transformation.

Step five: Find connections between processors and the direction of data flow:

At first unit of time, b11 and a11 enter PE1,1 which contains variable c11. Then each PE

performs a multiply and an add operation. Figure (4) shows the required interconnections

between the PEs.











y

x
dS

i1

jj











100

010
S



















100

010

111

T :Thus





























1

0
dS

0

1
dS

0

0
dS 312111

ii

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 83<

Figure (4): required interconnections between the PEs.

HDL design for systolic array
We'll now create an HDL design for systolic array which performs multiplication of

two 2-by-2 matrices A and B. The hierarchical organization of a VHDL design for systolic

array based on top-down methodology which explained earlier is illustrated in Figure (5).

Figure (5): Hierarchical organization of a VHDL design for systolic

array based on top-down methodology.

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

83=

The names of units in figure (5) are the same of that we have used in VHDL

code.The VHDL code for our design is about \800\ programming lines; so we use it as an

appendix of this research, and we have mentioned parts of the code when necessary. The

RTL level schematic for 2D systolic array that we have designed by Xilinx ISE V9.1

program is depicted in Figure (6). From figure (6), we can ratiocinate that the VHDL code

for systolic Array must contain two input buffers and five components. One component for

control unit and the other for four PEs that perform the same algorithm but is different in

inputs and outputs. The entity of systolic array is described as:

-- The bold font is used to describe VHDL keywords.

entity systolic is
 port (CLK, reset: in std_logic;

 A1, A2: in std_logic_vector (DATA_BITS-1 downto 0);
 B1,B2 : in std_logic_vector (DATA_BITS-1 downto 0);
CPE1, CPE2 : inout std_logic_vector (RESULT-BITS-1 downto 0) :=(others=>'0');

CPE3, CPE4 : inout std_logic_vector (RESULT-BITS-1 downto 0) :=(others=>'0');
 end systolic;

Figure (6): RTL level for 2D systolic array.

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 83>

1. Control Unit

The control unit creates the required signals. The synthesis of such control units is

described for designing sequential circuits. Figure (7) shows the structure of a control unit.

It consists of shift register, counter and decoder. The control signals are periodic which

Triggered by the maximal clock cycle. There are three control signals (clr1, clr2, clr3)

synchronize the MAC units in the PEs.

Figure (7): control unit architecture.

2. Processing Element:

There are four PEs. They do the same function, but are just different in the output, so

we'll define I/O for each PE alone:

PE1: has two 8-bit inputs, two 8-bit outputs, and one 16-bit output (register mode).

PE2: has two 8-bit inputs, one 8-bit output, and one 16-bit output (register mode).

PE3: has two 8-bit inputs, one 8-bit output, and one 16-bit output (register mode).

PE4: has two 8-bit inputs and one 16-bit output.

The RTL level of the PE shown in figure (8):

Figure (8): RTL level of PE Architecture.

The VHDL code for the PE consists of one process that buffersthe input data and one

component (MAC unit) that will be designed later.

The entity of PE is described as:

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

83?

entity processing_element is
 port (x : in std_logic_vector (DATA_BITS-1 downto 0);
 y: in std_logic_vector (DATA_BITS-1 downto 0);
 c_current : inout std_logic_vector (RESULT-BITS-1 downto

0):=(others=>'0');
xpe_out, ype_out: out std_logic_vector (DATA_BITS-1 downto 0);
 CLK, clr: in std_logic);
end processing_element;

3. Pipelined Multiply-Accumulate (PMAC) Unit

The PMAC unit that we'll design is an 8-bit PMAC such that it accepts data (and

outputs results) at a rate of 1/ (6 logic gate delays), in another words we'll insert the

pipeline technique to achieve the desired data processing rate. The structure of this PMAC

is illustrated in figure (9). It contains a two-complement unit, two kinds of adder units, and

registers. In order to pipeline this type of MAC unit, we must place pipeline registers at

appropriate points within the CSA array structure. In deciding where to place theses

pipeline registers, we should follow the guidelines [17]:

1- The resulting pipeline segments should have approximately equal delays.

2- Pipeline registers should be placed such that pipeline segments are created

using the smallest possible pipeline registers.

3- The delay through a CSA is the same, regardless of the data word size.

4- The delay through an inverter can be ignored, since an inverter can be

combined with other basic logic gates (e.g., a
'
b can be implemented as one "special" gate

instead of an inverter followed by an AND gate).

Since the multiplication of two 8-bit numbers results in a 16-bit number, the final

adder needs to be a 16-bit adder. The final adder can be implemented as a carry-lookahead

adder (CLA).

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 873

Figure (9): A multiply-accumulate (MAC) unit with pipeline registers

inserted at approximately equal delay points.

The depth of pipeline is three stages which mean:

- We'll use three registers (register for each stage).

- First two stages contain three CSA units.

- Third stage contains one CSA unit and one CLA unit.

Dealing with sign numbers, we convert data into a two-complement form by COMP

unit before it inputs into the MAC unit. Figure (10) shows the COMP block and the gate-

level for a two-complement form of 1-bit of input data.

Figure (10): COMP unit a) block diagram .b) gate-level for two-complement form of 1-bit.

3.1. Carry Save Adder

This type of adder is useful when more than two numbers are added [13, 14]. For

example, when there are numbers (X, Y, Z, and W) to be added, the CSA first produces the

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

877

sum and the saved carry for the first 3 numbers. Assuming that X=0101, y=0111, and

Z=0110, the produced sum and saved carry are:

 0101 X

 0111 Y

 + 0110 Z

 0100 sum

 1110 saved carry

In the next step, the sum, the saved carry, and the fourth number (W) are Added in

order to produce a new sum and a new saved carry, Assuming that W=0010,

 0100 sum

 1110 saved carry

 + 0010 W

 1000 new sum

 1100 new saved carry

In the last step, a carry lookahead adder is used to add the new sum and the new

saved carry.

The structure of the Carry Saved Adder illustrated in figure (11) [14].

Figure (11): Block diagram of an adder for adding four 4-bit numbers.

3.2. Carry Lookahead Adder

 Several compromises are employed between the pseudo parallel and strictly parallel

alternative, so this increases the speed of the carry propagation in a ripple carry adder [13,

14]. It produces the input carry bit directly, rather than allowing the carries to ripple from

full adder (FA) to full adder. Figure (12) shows the block diagram of the carry lookahead

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 878

adder that adds two 4-bit integers [14]. We note that the inputs to each carry block are only

the input numbers and the initial carry input (C0). The Boolean expression for each carry

block can be defined by using the carry-out expression of a FA:

 Ci+1= xi yi + Ci (xi + yi)

Figure (12): Block diagram of a 4-bit CLA

3.3. VHDL code for PMAC

The VHDL implementation of the pipelined MAC unit is written based on the

pipeline design method. In VHDL, variables should be used liberally to aid in behavioral

description. While signals should be used only for physical signals in the circuit. The

VHDL code for this design will start off with a definition of global constants. These global

constants will be defined in a separate (MAC_LIB) package within the default (work)

library. The constant DATA_BITS, defined as the number of bits in the input data words,

will be set to (8). Since the multiplication of two k-bit numbers will result in a 2k-bit

number, RESULT_BITS is defined as twice DATA_BITS. Finally PIPE_DEPTH (the

number of pipeline segments) is set to three.

package MAC_LIB is
-- Declare constants
constant DATA_BITS : integer :=8;
constant RESULT_BITS : integer := DATA_BITS *2;
constant PIPE_DEPTH : integer:=3;
-- Declare functions and procedure
function CONVERT (b_bit: std_logic; c: std_logic_vector (DATA_BITS-1 downto

0); start :INTEGER) return std_logic_vector ;
procedure COMPUT_CSA (pp_carry, pp_sum: out std_logic_vector

(RESULT_BITS-1 downto 0); data1, data2, data3: std_logic_vector (RESULT_BITS-1

downto 0):= (others => '0'));
end package;

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

879

One VHDL function will be used for simple sign-extension task. This function

(CONVERT) will take as inputs a data of size DATA_BITS and an offset value (named

start). Then, it will create an output of size RESULT_BITS, in which the data input has

been shifted left by the desired offset, with (0)values stored into the rightmost (start) bit

positions, and the sign bit (the MSB of the original data input) copied into all bit positions

to the left of the data input after it has been shifted. The copying of the MSB value serves

to preserve the sign of the original data.

-- function definition

-- function to shift and sign-extend (B(i) and C) data.

function CONVERT (b_bit:std_logic; c: std_logic_vector(DATA_BITS-1 downto 0);

start: integer) return std_logic_vector is
 variable temp : std_logic_vector (RESULT_BITS-1 downto 0);
 begin
 for i in 0 to start-1 loop
 temp (i) := '0';
 end loop;
 for i in 0 to DATA_BITS-1 loop
 temp (start+i) := b_bit and c(i);
 end loop;
 for i in DATA_BITS to RESULT_BITS-start-1 loop
 temp (start+i):=b_bit and c(DATA_BITS-1);
 end loop;
 return temp;
 end function CONVERT;

Next we must define the CSA blocks. So we'll write one procedure to do this

purpose. This procedure (COMPUT_CSA) describes the CSA blocks in this CSA array.

The VHDL code for a CSA block corresponds to the design shown in figure (11).

--

procedure COMPUT_CSA (pp_carry, pp_sum : out std_logic_vector

(RESULT_BITS-1 downto 0); data1, data2, data3: std_logic_vector (RESULT_BITS-1

downto 0) := others=>'0') is
 variable add_result : unsigned (1 downto 0);
 begin
 pp_carry(0) := '0';
 for i in 0 to RESULT_BITS -2 loop
 add_result :=
 unsigned (std_logic_vector'('0' & data1(i)))+
 unsigned (std_logic_vector'('0' & data2(i)))+
 unsigned (std_logic_vector'('0' & data3(i)));
 pp_carry (i+1):=add_result(1);
 pp_sum(i) := add_result(0);
 end loop;
 pp_sum(RESULT_BITS -1):= add_result(0);
 end procedure COMPUT_ CSA;

--

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 87:

The VHDL code for pipelined MAC circuit has six process blocks: two for

complementing the input data, and one for buffering them, the others for the three pipeline

segments used. Each process block executes concurrently with every other process block.

The entity of PMAC unit is described as:

--

entity mac_pipe is
 port(D : out std_logic_vector(RESULT_BITS-1 downto 0):= (others=>'0');
 A : in std_logic_vector(RESULT_BITS-1 downto 0):= (others=>'0');
 B,C : in std_logic_vector(DATA_BITS-1 downto 0);
 CLK,clr : in std_logic);
end mac_pipe;

--

Simulation Results

The result that we have obtained is 2D systolic array design based on FPGA. This

systolic array architecture executes the computation of matrix multiplication in time that

can't be performed in the recently used software, and the data stored in the accumulator in

each PE can return to global memory; so this architecture can deal with a large amount of

data and overcome the drawbacks that result from I/O and memory bandwidth bottleneck.

Because we have designed the PMAC based on pipeline technique, the speed-up has

increased and the computation has become faster than nonpipelined MAC. Figure (13)

represents the waveform that simulates our design using Xilinx-ISE V9.1 program. By

multiplication of two matrices:
























912

1620
B,

434

2623
A

The result is matrix C whose elements appear in the registers of processing elements

(CPE1, CPE2, CPE3, CPE4).































CPE4CPE3

CPE2CPE1

508728

602148

912

1620
*

434

2623

CB*A

In this simulation, we verify that this design is correct, and we can note that it needs

four clock cycles to do the computation (in our case, data stay in PEs).

 Tishreen University Journal. Eng. Sciences Series <833(;(العدد)93العلوم الهندسية المجلد) مجلة جامعة تشرين

87;

Figure (13): waveform diagram for simulation 2D systolic array design.

 Conclusion and Recommendations
Systolic array architectures have provided significant performance improvements for

many algorithms especially when we combine this architecture with FPGA technology. We

have introduced a new comprehension in using top-down system level methodology for

dealing with both temporal and spatial computing which characterize the systolic array.

There are some interesting ideas that require future work:

1. There are no standardized methods for evaluating performance parameters

of a systolic array.

2. Users need tools that support systolic array design.

3. Debugging of FPGA-based systems has not been addressed yet. FPGA

debugging in its current state is hardware debugging i.e., single stepping through

synchronous circuits, tracing signals, and analyzing.

4. Support for Partitioning of systolic array to enable very large sized

problems to be mapped to FPGA.

Acronyms and Terminology:

Carry Save Adder CSA Hardware Description Language HDL
Carry Lookahead Adder CLA Configurable Logic Block CLB

Processing Element PE Field Programmable Gate Array FPGA
Input/Output. I/O Very High Speed Integrated Circuit VHSIC

Look-Up Table LUT Multiply and Accumulator MAC
Logic Array Block LAB Pipelined Multiply and Accumulator PMAC

Basic Logic Element BLE Programmable Logic Device PLD
Full Adder FA Very Large Scale Integration VLSI

Register Transfer Level RTL 2'complement Transformation Unit COMP
Most Significant Bit MSB Digital Signal Processing DSP

VHSIC Hardware Description Language VHDL
Application Specific Integrated Circuit ASIC

 الأحمد, البستاني, ابراهيم FPGAتقنيةو VHDLلغة اعتماداً عمى تصميم ونمذجة المصفوفة الانقباضية

 87<

References:

[1]. SMITH, D. J. HDL Chip Design "A practical guide for designing, synthesizing and

simulating ASICs and FPGAs using VHDL or Verilog". Doone publication, Madison,

AL, USA, 1996, 555.

[2]. ZOMAYA, A. Y. Parallel and Distributed Computing Handbook. McGraw-Hill, New

York, USA, 1996, 500-536.

[3]. PIRSH, P. Architectures for Digital Signal Processing. John Wiley & Sons Ltd,

Baffin's Lane, Chichester, West Sussex PO19 1UD, England, 1998, 419.

[4]. KUMAR, V.; GRAMA, A; GUPTA, A; KARYPIS, G. Introduction to Parallel

Computing "Design and Analysis of Algorithms". 2
nd

.ed, Addison Wesley, 2003, 491-

523.

[5]. CHENG, S.; HANG H. A Comparison of Block-Matching Algorithms Mapped to

Systolic-Array Implementation. IEEE, Transactions on Circuits and Systems for

Video Technology, VOL. 7, N
o
. 5, OCTOBER 1997, 741-757.

[6]. HUGHEY, R. Programming Systolic Arrays. IEEE Computer Society, VOL. 41, N
o
. 8,

Aug, 1992, 604-618.

[7]. DESALVADOR, L.; GUTIERREZ, J. A Multilevel Systolic Approach for Fuzzy

Inference Hardware. IEEE Micro, Vol. 15, N
o
. 5, 1995, 61-71.

[8]. LIM, H.; SWARTZLANDER, E. E. An efficient Systolic Array for the Discrete Cosine

Transform Based on Prime-Factor Decomposition. IEEE VLSI in computers &

Processor, VOL. 39, N
o
. 11, 1995, 644- 649.

[9]. NAYLOR, D.; JONES, S. VHDL: A Logic Synthesis Approach. Chapman & Hall,

London, UK, 1997, 339.

[10]. COHEN, B. VHDL "Coding Styles and Methodologies". Kluwer Academic

Publishers, USA, 1995, 365.

[11]. PERRY, D. L. VHDL: Programming by Example.4
th

.ed, McGraw-Hill, USA, 2002,

476.

[12]. ASHENDEN, P. J. The Designer's Guide to VHDL. 2
nd

.ed, Morgan Kaufmann

Publishers, San Francisco, USA, 2002, 739.

[13]. NELSON, V. P.; NAGLE, H. T.; CARROLL, B.D.; IRWIN, J. D. Digital Logic

Circuit Analysis and Design. Prentice-Hall, Inc, New Jersey, USA, 1995, 842.

[14]. ZARGHAM, M. R. computer Architecture "single and parallel systems". Prentice–

Hall International, Inc, 472.

[15]. ZHANG, D. Parallel VLSI Neural system Design. Springer, Singapore, 1999, 257.

[16]. MOLDOVAN, F. I. Parallel Processing "from Applications to Systems". Morgan

Kaufmann Publishers, San Mateo, California, USA, 1993,567.

[17]. LEE, S. Advanced Digital Logic Design "Using VHDL, State Machines, and

Synthesis for FPGAs". THOMSON, Canada, 2006, 488.

