دراسة أداء مخمد الاهتزاز من نوع PID في نظام قدرة متعدد الآلات وأثره في استقرار النظام

الدكتور محمد عبد الحميد*

(تاريخ الإيداع 31 / 7 / 2007. قُبِل للنشر في 2007/11/11

□ الملخّص □

إن إضافة إشارة تحكم إضافية عبر مخمد الاهتزاز إلى نظام التهييج تعد واحدة من أهم الطرق المستخدمة في تحسين استقرار نظم الطاقة الكهربائية. تم في هذا البحث دراسة أداء مخمد اهتزاز من نوع PID في نظام متعدد الآلات وذلك عند تعرض النظام إلى اضطرابات خفيفة (استقرار ديناميكي) واضطرابات كبيرة مثل تيارات القصر (استقرار عابر). رسمت منحنيات الاستجابة الزمنية لمتغيرات النظام (زاوية دوار الآلة المتواقتة، السرعة، والجهد الطرفي والاستطاعة الكهربائية) عند استخدام المخمد من نوع PID وتمت مقارنتها مع منحنيات الاستجابة الزمنية لأداء النظام عند استخدام مخمد اهتزاز من النوع التقليدي. بينت النتائج أن استخدام المخمد من نوع PID يعطي تخامداً جيداً للنظام عند تغيرات الحمولة المختلفة إضافة إلى الأعطال التي يمكن أن تحدث في النظام. وهذا يسمح بزيادة حدود الاستطاعة المنقولة ومن ثمة زيادة حدود استقرار النظام.

الكلمات المفتاحية: نظم الطاقة الكهربائية، استقرار نظم الطاقة الكهربائية، مخمد اهتزاز.

^{*}أستاذ مساعد- قسم هندسة الطاقة الكهربائية- كلية الهندسة الميكانيكية والكهربائية- جامعة تشرين- اللائقية- سورية.

Studying the Performance of The Pid Power System Stabilizer in Multi-Machine Power System and its Effect on the Stability of the System

Dr. Mohammed Abd El-hamid*

(Received 31 / 7 / 2007. Accepted 11/11/2007)

\square ABSTRACT \square

Adding a supplementary control signal through power system stabilizer to the excitation system is considered one of the most important methods used in the improvement of the stability of the electrical power system. This research studies the performance of PID power system stabilizer in multi-machine power system when the system is subjected to small disturbances (Dynamic stability) and large disturbances such as short-circuit (Transient stability).

The time response curves of the system variables (rotor angle, speed, and terminal voltage) have been drawn when a PID power system stabilizer applied; and these curves are compared with the time response curves of the system performance when the conventional power system stabilizer is applied. Results showed that the use of PID power system stabilizer gives good damping to the system when subjected to small and large disturbances. This would allow increase of the limit of the transferred power and consequently the power system stability limits.

Key words: Electrical power system, Dynamic stability, Power system stabilizer

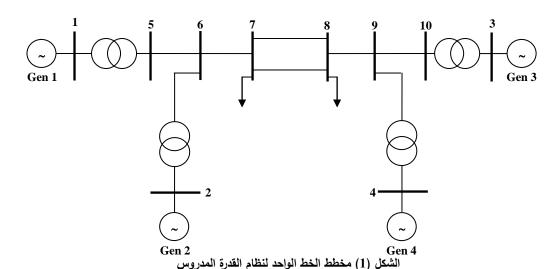
134

^{*} Associate Professor, Department of Electrical Power, Faculty of Mechanical & Electrical Engineering, Tishreen University, Lattakia, Syria.

1- مقدمة:

نتيجة لزيادة حجم وتعقيد أنظمة الطاقة الكهربائية، غالباً ما تعمل أنظمة الطاقة الكهربائية عند حدود استقرار مخفضة. لذلك، يعد تحسين استقرار النظام واحداً من أهم المواضيع التي تضمن التشغيل الموثوق لأنظمة الطاقة الكهربائية. يمكن أن يحدث في الأنظمة الحديثة القائمة العديد من الاهتزازات، يدعى أحدها بالنمط المحلي من الاهتزازات (Local mod of oscillation) ويتراوح مجال تردد هذا النمط ضمن المجال من 0.7 إلى 2.2 Hz. وهذا يعدث عندما يهتز مولد أو مجموعة مولدات في محطة توليد محددة مؤثراً في النظام. النمط الأخر يدعى بالنمط المتداخل بين المناطق (inter area mode) ويشار إلى هذا النوع من الاهتزازات المرافقة لعدة مولدات في منطقة ما من النظام تهتز بالنسبة إلى بقية النظام، ويتراوح مجال تردد هذه الاهتزازات من 0.1 إلى 0.8Hz الى المحيط الهادي في الولايات المتحدة الأمريكية. كما تم ملاحظتها في خطوط الربط بين القسم الشمالي والوسط الغربي في كندا. تم ملاحظة الاهتزازات ذات الترددات المنخفضة عند 0.4 Hz على نظام الطاقة في اليابان الشرقية، كما تم ملاحظة الاهتزازات من نوع inter-area نتيجة خروج 400MW في شبكة فرنسا في 4 نيسان 100 [2].

يعد التحكم عن طريق التهييج واحداً من الوسائل الفعالة لتحسين مجمل استقرار نظم الطاقة الكهربائية والذي يؤثر مباشرةً في الآلة المتواقتة حيث أنه يتحكم بالـ E.M.F. المولدة ومطال التيار [3,1]. يظهر تأثير نظام التهييج بوضوح في تقليل خطورة تأرجح الآلة عندما تتعرض إلى اضطراب كبير عبر تقليل مطال التأرجح الأول للآلة. تم التحقق في كثير من المقالات من أن التغير المتدرج لبارامترات النظام مثل تغيرات الحمولة، إضافة إلى الحالات الطارئة التي تصيب النظام، يمكن أن تقود إلى عدم استقراره. بذلت جهود كبيرة لاستخدام مخمد الاهتزاز (PSS) لإخماد الاهتزازات ذات الترددات الصغيرة وتحسين استقرار النظام [3,1]. حتى الآن أثبت أن استخدام الـ PSS يعد وسيلة اقتصادية وفعالة في تحسين استقرار النظام، حيث أنه يقدم تخامداً إضافياً عبر نظام التهييج، لذلك نلاحظ استخدامه على نطاق واسع في أنظمة الطاقة الكهربائية. لقد تم تطوير العديد من أنظمة الـ PSS والتي تعتمد في عملها على أنظمة تحكم مختلفة. مع الاستخدام الواسع لنظام الـ PSS وضبط بارامتراته لتحسين الأداء الديناميكي وخاصة في أنظمة الطاقة متعددة الآلات. لذلك لقي تتسيق عمل الـ PSS وضبط بارامتراته لتحسين الأداء الديناميكي للنظام قدعددة الآلات اهتماماً كبيراً [5,6,5,4]. تتم عادة دراسة تحليل استقرار النظام من خلال المحاكاة في المجال الزمني. يتم ذلك عن طريق بناء نموذج رياضي للنظام مؤلف من مجموعة من المعادلات الرياضية التي تصف النظام [1,1,1,1,1].


2-أهمية البحث وأهدافه:

يعد الحفاظ على قيم اسمية ثابتة للتردد والجهد من أهم مقومات الأداء الجيد لنظم الطاقة الكهربائية، وهذا يأتي من الحفاظ الدقيق على توازن الاستطاعة الفعلية والردية بين التوليد والاستهلاك. ولكن نتيجة لتغيرات الحمولة والأعطال الكبيرة التي يمكن أن تصيب النظام، يحدث اختلاف بين الاستطاعة المولدة والمستهلكة مما قد يسبب تسارعاً أو تباطؤاً دوار الآلات المتواقتة مؤدياً إلى تأرجح متحولات النظام مثل زاوية دوار المولد، والسرعة، والجهد على أطراف المولد والاستطاعة الكهربائية. هذه التأرجحات تزداد مع الزمن إذا لم يتوفر الإخماد الكافي لها مسببة عدم

استقرار النظام وخروج المولدات عن التواقت. يهدف هذا البحث إلى تقديم طريقة لإخماد هذه التأرجحات الناشئة في النظام باستخدام مخمد اهتزاز من نوع PID يقدم إشارة تحكم للمولد عن طريق نظام التهييج. تمت دراسة فعالية النظام المقترح على نظام متعدد الآلات مؤلف من أربع محطات توليد موصلة ببعضها بعض عبر خطوط نقل وتغذية مجموعة من الأحمال.

3- النموذج الرياضى لنظام القدرة المدروس:

يمثل الشكل (1) مخطط الخط الواحد للنظام المدروس [13,8]. يمثل هذا النظام نموذج نظام قدرة مؤلف من 10 قضبان تجميع، وأربع محطات توليد متماثلة تغذي الطاقة عند القضبان /4،2،3،4/ حيث تحمل كل وحدة توليد حوالي 700 MW. تغذي المولدات الطاقة إلى الشبكة عبر أربع محولات رافعة للجهد 700 MW. زودت كل من وحدات التوليد بنظام تهييج سريع من نوع (14.2 (EEE-Type) كما هو موضح في الشكل (2). كما زودت كل وحدة توليد بتوربين بخاري نموذج (Type-B) ترادفي مركب، أحادي التحميص كما هو مبين في الشكل (3). يتم تظيم تدفق البخار في التوربين بواسطة منظم كهربائي ميدروليكي كما هو مبين في الشكل (4). لقد تم تمثيل جميع وحدات التوليد من النموذج الديناميكي نفسه. تم في هذا البحث دراسة أداء مخمد الاهتزاز من نوع PID_PSS في نظام متعدد الآلات ومقارنتها بمخمد اهتزاز من النوع التقليدي CPSS. يتألف مخمد الاهتزاز التقليدي التقليدي تعويض من نوع متقدم امتأخر بالإضافة إلى صندوق تصريف يضمن عدم استجابته إلى دو CPSS من صندوقي تعويض من نوع متقدم المتاخر بالإضافة إلى صندوق تصريف يضمن عدم استجابته إلى عند وصلهما إلى نظام التهييج للآلة المتواقتة لتعديل زاوية العزم لمحور الدوران لزيادة التخامد. يغذى دخل المخمد بإشارة تغير السرعة لمحور الدوران لزيادة المتواقدة لتعديل زاوية العزم لمحور الدوران لزيادة التخامد. يغذى دخل المخمد بإشارة تغير السرعة لمحور الدوران للريادة المخمد عدم الهذه المخمد بإشارة موجبة إلى دخل المنظم الآلي للجهد.

المعادلات الميكانيكية للمولد المتواقت [14,11,9]:

$$\dot{\omega} = \frac{1}{2H} (P_m - P_s - D\omega) \tag{1}$$

$$\dot{\delta} = \omega \omega_o \tag{2}$$

تفاضل المتحول =d/dt

السرعة الزاوية وزاوية القدرة على التوالى. δ, ω

H, D ثابت التخامد وثابت العطالة للآلة على التوالي.

. الاستطاعة الميكانيكية والكهربائية على التوالي P_e, P_m

السرعة الزاوية الاسمية لدوار المولد. ω_o

المعادلات الكهربائية للمولد المتواقت [14,9]:

لقد تم استخدام نموذج منسوب إلى المحورين q,d (المحور المباشر والمحور المتعامد أو غير المباشر) مع استخدام لقد تم استخدام نموذج منسوب إلى المحورين q,d

$$\begin{aligned} v_{q} &= r_{s} i_{q} + \dot{\lambda}_{q} + \omega \lambda_{d} \\ v_{d} &= r_{s} i_{d} + \dot{\lambda}_{d} - \omega \lambda_{q} \\ v'_{fd} &= r'_{fd} i'_{fd} + \dot{\lambda}'_{fd} \\ v'_{kd} &= r'_{kd} i'_{kd} + \dot{\lambda}'_{kd} \\ v'_{kq1} &= r'_{kq1} i'_{kq1} + \dot{\lambda}'_{kq1} \\ v'_{kq2} &= r'_{kq2} i'_{kq2} + \dot{\lambda}'_{kq2} \end{aligned}$$
 [V] (3)

تعطى الفيوض المترابطة بالعلاقات التالية:

$$\begin{split} \lambda_{q} &= L_{q}i_{q} + L_{mq}i'_{kq} \\ \lambda_{d} &= L_{d}i_{d} + L_{md}i'_{fd} + L_{md}i'_{kd} \\ \lambda'_{fd} &= L_{md}i_{d} + L_{md}i'_{kd} + L'_{fd}i'_{fd} \\ \lambda'_{kd} &= L_{md}i_{d} + L_{md}i'_{fd} + L'_{kd}i'_{kd} \\ \lambda'_{kq1} &= L_{mq}i_{q} + L'_{kq1}i'_{kq1} \\ \lambda'_{kq2} &= L_{mq}i_{q} + L'_{kq2}i'_{kq2} \end{split} \right)$$

q,d الكميات على المحورين d و q

S,r كميات تشير إلى الدوار والثابت.

. تحريضية التمغنط والتسربية l,m

. كميات تشير إلى ملفات الحقل والإخماد k,f

معادلات نموذج نظام التهييج:

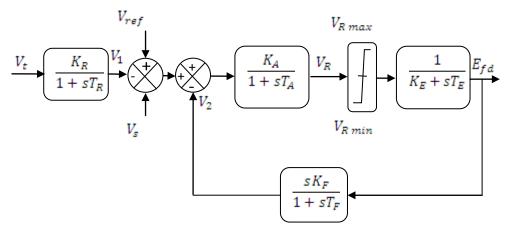
يمكن كتابة معادلات نظام التهبيج من الشكل (2) كما يلي:

$$\dot{E}_{fd} = -\frac{K_E}{T_E} E_{fd} + \frac{1}{T_E} V_R \tag{5}$$

$$\dot{V}_{R} = -\frac{1}{T_{A}} V_{R} - \frac{K_{A}}{T_{A}} V_{2} - \frac{K_{A}}{T_{A}} V_{1} + \frac{K_{A}}{T_{A}} V_{s} + \frac{K_{A}}{T_{A}} V_{ref}$$
(6)

$$\dot{V}_2 = -\frac{K_F K_E}{T_E T_F} E_{fd} + \frac{K_F}{T_E T_F} V_R - \frac{1}{T_F} V_2 \tag{7}$$

$$\dot{V}_1 = \frac{K_R}{T_R} V_t - \frac{1}{T_R} V_1 \tag{8}$$

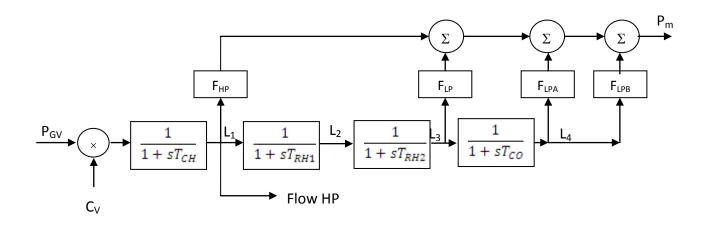

الجهد على أطراف الآلة، جهد حقل التهييج. E_{fd}, V_t

الثابت الزمني والربح لدارة منظم الجهد الآلي على التوالي. K_A , T_A

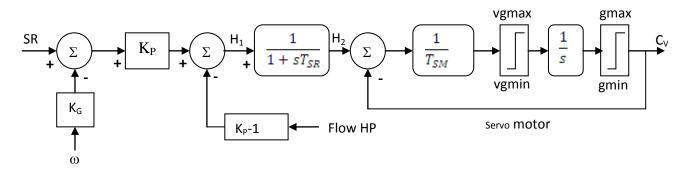
الثابت الزمني والربح لدارة المهيج على التوالي. K_E

الثابت الزمني والربح لدارة مخمد الاهتزاز للمهيج على التوالي. K_F, T_F

الثابت الزمني والربح لدارة المرشح على التوالي. K_R , T_R


الشكل (2) نموذج نظام التهييج (Exciter) من نوع IEEE Type-1 معدَل

نموذج التوربين ومنظم السرعة:


لتقديم العزم والاستطاعة الميكانيكية المتغيرة خلال المحاكاة الديناميكية، تم استخدام نموذج توربين/منظم السرعة المبينين في الشكلين (3) و (4) و (5) [15, 9]. يبين الشكل (3) توابع النقل للتوربين البخاري من نوع $P_{\rm GV}$. يشار إلى استطاعة الميكانيكية الخارجة من التوربين ب $P_{\rm GV}$. كما يشار إلى الاستطاعة الميكانيكية الخارجة من التوربين ب $P_{\rm GV}$. كما يشار إلى من وصلة تحويل البخار ، المحمص وصندوق البخار على التوالي. الثوابت الزمنية لكلٍ من وصلة تحويل البخار ، المحمص وصندوق البخار على التوالي. أجزاء العزوم المقدمة من التوربينات الأربعة الممثلة للنوع $P_{\rm HP}$ منسوبة إلى التوربين ذي الضغط العالي، $P_{\rm LPA}$ منسوبة إلى التوربين الضغط المنخفض. مع مراعاة أن تحقق هذه العزوم العلاقة التالية:

$$F_{HP} + F_{IP} + F_{LPA} + F_{LPB} = 1 (9)$$

يمثل الدخل C_V خرج منظم السرعة والذي يتحكم باستطاعة البخار. يمثل الشكل (4) النموذج الرياضي اللاخطي لمنظم سرعة كهربائي- هيدروليكي المستخدم في التوربين البخاري. يمثل الدخل SR السرعة المرجعية التي يمكن أن تعدّل أن تعدّل آلياً وفقاً لمتطلبات التحكم في التردد أو استطاعة المنطقة.

الشكل (3) المخطط الصندوقي للتوربين البخاري من نوع ترادفي مركب، أحادي التحميص

الشكل (4) منظم السرعة (speed governors) كهربائي-هيدروليكي

يمثل الربح وقيمته عادةً تساوي إلى 20 K_p تأخذ القيمة 3 من أجل منظم السرعة بتغذية عكسية للتوربين - K_G البخاري ذي الضغط العالى، وتساوى 1 بدون التغذية العكسية.

. الثابت الزمني لريليه السرعة. T_{SM} الثابت الزمني لمحرك السيرفو.

من الشكلين (3) و (4) يمكن كتابة معادلات النظام على النحو التالى:

$$\dot{H}_{2} = -\frac{K_{p}K_{G}}{T_{SR}}\omega - \frac{1}{T_{SR}}H_{2} + \frac{K_{p}}{T_{SR}}SR - \frac{K_{p}-1}{T_{SR}}L_{1} \tag{10}$$

$$\dot{C}_V = \frac{1}{\tau_{SM}} H_2 - \frac{1}{\tau_{SM}} C_V \tag{11}$$

$$\dot{C}_{V} = \frac{1}{T_{SM}} H_{2} - \frac{1}{T_{SM}} C_{V}$$

$$\dot{L}_{1} = -\frac{1}{T_{CH}} L_{1} + \frac{P_{GV}}{T_{CH}} C_{V}$$

$$\dot{L}_{2} = -\frac{1}{T_{RH1}} L_{2} + \frac{1}{T_{RH1}} L_{1}$$

$$\dot{L}_{3} = -\frac{1}{T_{RH2}} L_{3} + \frac{1}{T_{RH2}} L_{2}$$

$$(11)$$

$$(12)$$

$$\dot{L}_{1} = -\frac{1}{T_{RH2}} L_{2} + \frac{1}{T_{RH2}} L_{1}$$

$$(13)$$

$$\dot{L}_2 = -\frac{1}{T_{\text{PM}}} L_2 + \frac{1}{T_{\text{PM}}} L_1 \tag{13}$$

$$\dot{L}_3 = -\frac{1}{T_{\text{DVL}}} L_3 + \frac{1}{T_{\text{DVL}}} L_2 \tag{14}$$

$$\dot{L}_4 = -\frac{1}{T_{CO}} L_4 + \frac{1}{T_{CO}} L_3 \tag{15}$$

$$P_m = F_{HP}L_1 + F_{LP}L_3 + F_{LPA}L_4 + F_{LPB}L_4 \tag{16}$$

معادلات نظام مخمد الاهتزاز من نوع PID_PSS:

يقدم مخمد الاهتزاز هذا إشارة جهد V_s تضاف كإشارة دخل إلى المهيج عبر منظم الجهد الآلي. من الشكل (5) يمكن كتابة إشارة الدخل المقدمة من المخمد على النحو التالى:

$$V_{s} = \frac{sT_{WE}}{1 + sT_{WE}} \left(K_{pE} + \frac{K_{lE}}{s} + K_{DE} s \right) d\omega$$

$$V_{pE} = \frac{sT_{WE}}{1 + sT_{wE}} \left(K_{pE} + \frac{K_{lE}}{s} + K_{DE} s \right) d\omega$$

$$V_{pE} = \frac{sT_{WE}}{1 + sT_{wE}}$$

$$V_{emin} = \frac{V_{emin}}{V_{emin}}$$

$$V_{emin} = \frac{V_{emin}}{V_{emin}}$$

الشكل (5) مخمد الاهتزاز من نوع PID_PSS

الثابت الزمني للمرشح. $-K_{PE}$ الربح التناسبي للمخمد. $-K_{DE}$ الربح التفضلي للمخمد. $-K_{DE}$

معادلات مخمد الاهتزاز التقليدي CPSS:

من المخطط الصندوقي لمخمد الاهتزاز التقليدي المبين في الشكل (6) يمكن كتابة المعادلة التالية:

$$V_{s} = \left(\frac{sK_{s}T_{W}}{1+sT_{W}}\right)\left(\frac{1+sT_{s}}{1+sT_{s}}\right)\left(\frac{1+sT_{s}}{1+sT_{s}}\right)d\omega$$

$$V_{s max}$$

$$V_{s max}$$

$$V_{s max}$$

$$V_{s max}$$

$$V_{s max}$$

$$V_{s min}$$

$$V_{s min}$$

$$V_{s min}$$

الشكل (6) مخمد الاهتزاز التقليدي CPSS.

الربح للمخمد التقليدي. T_w, T_4, T_3, T_2, T_1 ثوابت زمنية. K_s

4- المحاكاة والاستجابة الديناميكية:

لدراسة أداء مخمد الاهتزاز من نوع PID_PSS في الأنظمة المتعددة الآلات تم استخدام نموذج القدرة المبين في الشكل (1). معطيات خطوط النقل مبينة في الجدول (1) بالقيم الواحدية منسوبة لأساس 230 kV و 100MVA، يبين الجدول (2) معطيات المولدات، بينما الجدولان (4) و (5) يبينان قيم ثوابت نظام التهييج والتوربين مع منظم السرعة على التوالي.

الجدول (1) معطيات ممانعات الخطوط في النظام المدروس

From	To	R(pu)	X(pu)	B/2(pu)
5	6	0.0025	0.025	0.021875
6	7	0.001	0.01	0.00875
7	8 each line	0.022	0.22	0.1925
8	9	0.001	0.01	0.00875
9	10	0.0025	0.025	0.021875

الجدول (2) ثوابت المولدات المتواقتة المستخدمة

Parameter	Gen 1,2	Gen 11,12	
.ld المفاعلة المتواقتة على المحور	x_d	1.8	1.8
.bالمفاعلة العابرة على المحور	x'_d	0.3	0.3
.المفاعلة دون العابرة على المحور	x''_d	0.25	0.25
. المفاعلة المتواقتة على المحور	x_q	1.7	1.7
. المفاعلة العابرة على المحور	x_q^{\dagger}	0.55	0.55
.pالمفاعلة دون العابرة على المحور	x''_q	0.25	0.25
مقاومة الثابت.	r_s	0.0025	0.0025
التحريضية التسربية للثابت.	XI	0.2	0.2
.bالثابت الزمني العابر للدارة المفتوحة على المحور	T'_{do}	8.0	8.0
.bالثابت الزمني دون العابر للدارة المفتوحة على المحور	T'' _{do}	0.03	0.03
.pالثابت الزمني العابر للدارة المفتوحة على المحور	T'_{qo}	0.4	0.4
.pالثابت الزمني دون العابر للدارة المفتوحة على المحور	$T^{,;}_{qo}$	0.05	0.05
ثابت العطالة.	H^{r}	6.5	6.175

الجدول (3) قيم ثوابت نظام التهييج

	' ' '	
Parameter	Value	
K_A	200	
T_{A}	0.001	
K_{E}	1.0	
$T_{ m E}$	0.0	

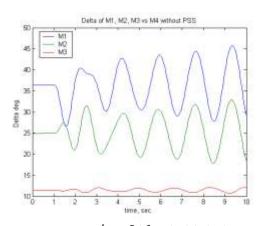
الجدول (4) قيم ثوابت التوربين مع منظم السرعة

Parameter	Value	Parameter	Value
K_p	1		
T_{CH}	0.5 s	T_{CO}	1 s
T_{RH1}	3.3 s	T_{RH2}	10 s
F_{LPB}	0 pu	F_{LPA}	0.36 pu
F_{LP}	0.36 pu	F_{HP}	0.28 pu
T_{SR}	0.001 s	T_{SM}	0.15 s
vgmin	-0.1 pu/s	vgmax	0.1 pu/s
gmin	0 pu	gmax	4.496 pu

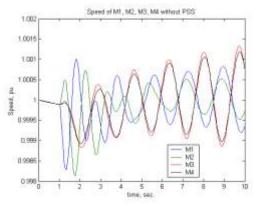
لدراسة أداء النظام تم نمذجته باستخدام برنامج Simulink في برنامج الـ MATLAB. واختيرت طريقة رونغا-كوتا لحل جملة المعادلات التفاضلية. وتم دراسة الأداء الديناميكي للنظام عند الحالات التالية:

دراسة الاستقرار الديناميكي:

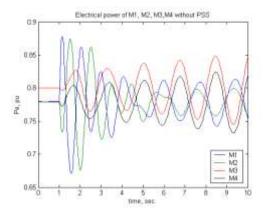
Gen1 تم تعريض النظام إلى اضطراب خفيف (تغير طفيف في الحمولة) ممثلاً بتغير الجهد المرجعي للمولد $V_t, \, \omega, \, \delta$ من أجل الحالات التالية:

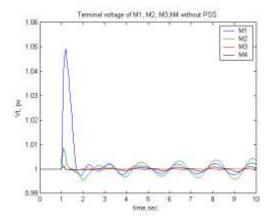

- ✓ عمل النظام بوجود نظام التهييج.
- ✓ عمل النظام بوجود نظام التهييج مع مخمد الاهتزاز التقليدي CPSS. حيث تم ضبط ثوابت المخمد على القيم التالية:

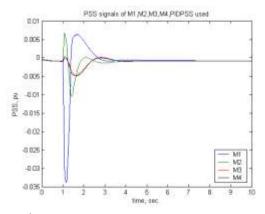
$$K_s = 30$$
 $T_w = 10$ $V_{s,min} = -0.15$ $V_{s,min} = 0.15$ $T_1 = 0.05$ $T_2 = 0.02$ $T_3 = 3$ $T_4 = 5.4$

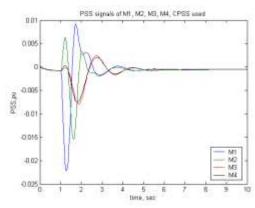

✓ عمل النظام بوجود نظام التهييج مع مخمد الاهتزاز من نوع PID_PSS. حيث استخدمنا نظرية التحكم الحديث في تحديد ثوابت المخمد وهي:

$$T_{WE} = 1.425$$
$$T_{IE} = 35$$

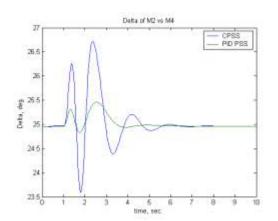


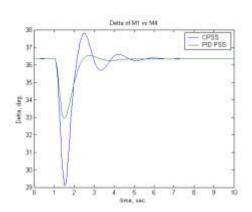

الشكل (8) السرعة للآلات الأربع بدون PSS


الشكل (7) زاوية الدوار للآلات الثلاث مقابل الرابعة بدون PSS

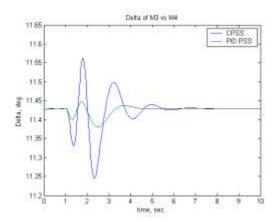


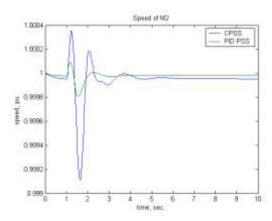
الشكل (10) الاستطاعة الكهربائية للآلات الأربع بدون PSS


الشكل (9) الجهد الطرفي للآلات الأربع بدون PSS



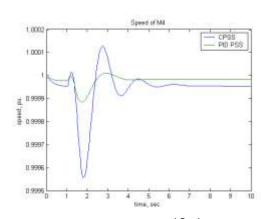
الشكل (12) إشارات الـ PID_PSS المقدمة للآلات الأربع

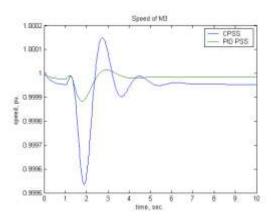

الشكل (11) إشارات الـ CPSS المقدمة للآلات الأربع



الشكل (14) زاوية الدوار للآلة 2 مقابل 4 عند استخدام الـ CPSS و PIDPSS

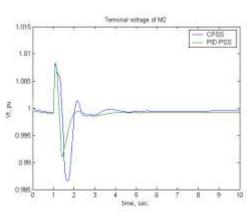
الشكل (13) زاوية الدوار للآلة 1 مقابل 4 عند استخدام الـ PIDPSS

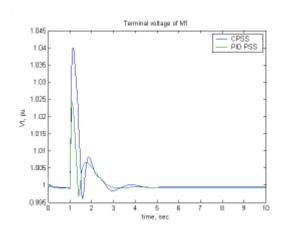

الشكل (15) زاوية الدوار للآلة 3 مقابل 4 عند استخدام الـ CPSS و PIDPSS



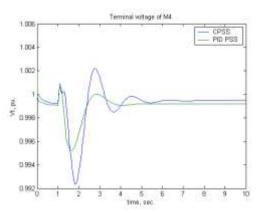
1,0006 Speed of MI - CPSS - PID PSS - PID PSS

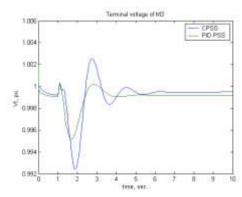
الشكل (17) سرعة الآلة 2 عند استخدام الـ CPSS و PIDPSS


الشكل (16) سرعة الآلة 1 عند استخدام الـ CPSS و PIDPSS



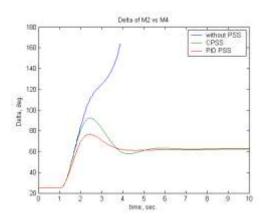
الشكل (19) سرعة الآلة 4 عند استخدام الـ CPSS و CPSS


الشكل (18) سرعة الآلة 3 عند استخدام الـ CPSS وPIDPSS



الشكل (21) الجهد على أطراف الآلة 2 عند استخدام الـ CPSS و PIDPSS

الشكل (20) الجهد على أطراف الآلة 1 عند استخدام الـ CPSS و CPSS


الشكل (23) الجهد على أطراف الآلة 4 عند استخدام الـ CPSS وPIDPSS

الشكل (22) الجهد على أطراف الآلة 3 عند استخدام الـ PIDPSS

يمثل الشكل (7) الاستجابة الزمنية لزاوية الدوار للمولدات 1، 2، و 3 مقابل المولد 4 وذلك بدون استخدام الد PSS كما يمثل الشكل (8)،(9) و (10) الاستجابة الزمنية لكلٍ من السرعة ω والجهد الطرفي V_i والاستطاعة الكهربائية P_e على التوالي للمولدات الأربعة بدون استخدام الد PSS. تبين الأشكال السابقة أن النظام لا يملك التخامد الكافي لإخماد الاهتزازات الناشئة نتيجة تغير حالات التشغيل حيث نلاحظ أن مطالات الاهتزازات تزداد مع الزمن مسببة بالنتيجة عدم استقرار النظام. هذا يعود لأن نظام التهبيج لوحده فقط غير كاف لتقديم التخامد الكافي في النظام متعدد الآلات، غير أنه يمكن أن يقدم التخامد الكافي للحفاظ على استقرار النظام عند استخدام آلة مفردة. يمثل الشكل (11) إشارات التخامد المقدمة من المخمد التقليدي لكل من الآلات الأربع، بينما يمثل الشكل (12) إشارات التخامد المقدمة من المولدات الأربعة. نلاحظ هذه الإشارات ذات تخامد أسرع من المبينة في الشكل (13) مما قد تساعد في سرعة إخماد الاهتزازات. تمثل الأشكال (13)، (14) و (15) الاستجابة الزمنية لزاوية الدوار للحسل مسن الآلات 1، 2، 3 مقابيل 4 وذلي عند السينة في الأشكال (13)، (14) و (15) و (15) الاستجابة الزمنية للمرعة للآلات الأربع المبينة في الأشكال (15)، (18) و (19) وأيضاً من منحنيات الاستجابة الزمنية للجهد على أطراف المولدات الأربع المبينة في الأشكال (13)، (14) و (25) و (25).

دراسة الاستقرار العابر:

- ✓ عمل النظام بوجود نظام التهييج فقط.
- ✓ عمل النظام بوجود نظام التهييج مع مخمد الاهتزاز التقليدي CPSS. حيث تم ضبط ثوابت المخمد على الحالة السابقة نفسها.
- ✓ عمل النظام بوجود نظام التهبيج مع مخمد الاهتزاز من نوع PID_PSS. حيث تم ضبط ثوابت المخمد على
 قيم الحالة السابقة نفسها.

Delta of M1 vs M4

without PSS

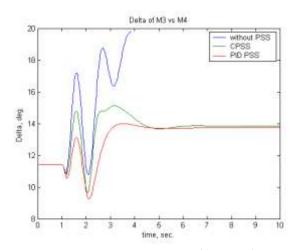
CPSS

PID PSS

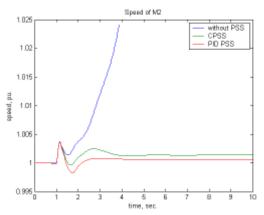
140

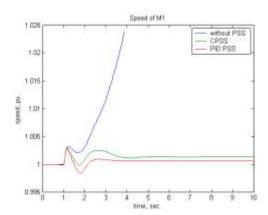
120

80

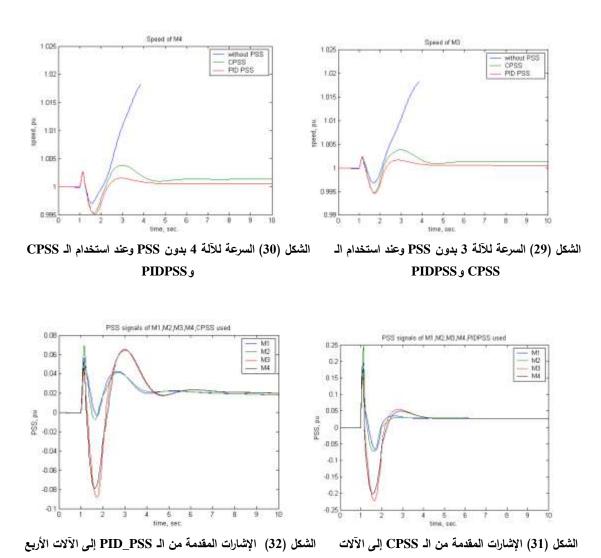

40

20


1 2 3 4 5 6 7 8 9 10


الشكل (25) زاوية الدوار للآلة 1 بدون PSS وعند استخدام الـ PIDPSS و CPSS

الشكل (24) زاوية الدوار للآلة 1 بدون PSS وعند استخدام الـ CPSS و PIDPSS


الشكل (26) زاوية الدوار للآلة بدون PSS وعند استخدام الـ CPSS و PIDPSS

الشكل (28) السرعة للآلة 2 بدون PSS وعند استخدام الـ PIDPSS و PIDPSS

الشكل (27) السرعة للآلة 1 بدون PSS وعند استخدام الـ CPSS و PIDPSS

نلاحظ أنه عند تعريض النظام إلى اضطرابات كبيرة بوجود نظام التهييج فقط، تزداد مطالات الاهتزاز للمتحولات بوتيرة متسارعة ويخرج النظام عن التواقت خلال فترة أقل من 3 ثانية كما هو مبين في الأشكال من (24) إلى (30)، بينما عند تعريضه إلى اضطرابات خفيفة يستمر بالعمل لفترة زمنية أطول ومن ثم يفقد استقراره كما رأينا سابقاً. من مقارنة الأشكال (24) و (25) و (26) والتي تمثل منحنيات الاستجابة الزمنية لزاوية الدوار للآلات 1، 2 و 3 مقابل 4 بدون PSS وعند استخدام الـ CPSS والتي تمثل منحنيات الاستخدام الـ CPSS يعطى تخامداً جيداً يحافظ على استقرار النظام، بينما عند استخدام الـ PID_PSS يعطى تخامداً أكبر للنظام حيث تنخفض مطالات يحافظ على استقرار النظام، بينما عند استخدام الـ PID_PSS يعطى تخامداً أكبر للنظام حيث تنخفض مطالات الاهتزاز للمتحولات وتصل المتحولات إلى قيمها في الحالة الثابتة خلال فترة زمنية أقصر، حوالي \$ 3.5. كما تؤكد منحنيات الاستجابة الزمنية للسرعة للآلات الأربع المبينة في الأشكال (27) إلى (30) على فعالية أداء المخمد من نوع PID عند استخدامه في الأنظمة المتعددة الآلات عند تعرضه إلى اضطرابات كبيرة. تبين الأشكال (31) و (32) إشارات التحكم المقدمة من الـ CPSS والـ PID_PSS إلى دخل نظام التهييج في كل آلة عند تعرض النظام إلى دارة قصر ثلاثية الأطوار.

الأربع

5- الاستنتاجات:

تم في هذا البحث اختبار الاستقرار الديناميكي والعابر عند تطبيق مخمد الاهتزاز التقليدي CPSS ومخمد الاهتزاز المقترح من نوع PID_PSS ،على نظام متعدد الآلات مؤلف من 10 قضبان تجميع وأربع محطات توليد بخارية موصلة ببعضها بعضاً عبر خطوط نقل الطاقة وتصل الطاقة إلى الشبكة عبر محولات رافعة للجهد 20/230 بخارية موصلة ببعضها بعضاً عبر خطوط نقل الطاقة وتصل الطاقة إلى الشبكة عبر محولات رافعة للجهد دوار kV. تم نمذجة النظام باستخدام برنامج Simulink في برنامج المولد والسرعة والجهد الطرفي وذلك عند تعرض النظام إلى تغيرات خفيفة للحمولة ودارة قصر ثلاثية الأطوار. من تحليل منحنيات الاستجابة الزمنية تبين لدينا ما يلى:

- ✓ عند تعرض النظام إلى اضطرابات خفيفة بوجود نظام التهييج فقط، كان النظام ضعيف التخامد، مما أدى إلى زيادة مطالات التأرجح تدريجياً مع الزمن ومن ثمة خروج النظام عن التواقت بعد فترة من الزمن. أما عند استخدام مخمد الاهتزاز المقترح فقد أعطى تخامداً جيداً للنظام مقارنةً مع استخدام مخمد الاهتزاز النقليدي، مما أدى إلى الحفاظ على استقرار النظام وعودة متحولات النظام إلى قيمها في الحالة الثابتة بعد فترة زمنية قصيرة.
- ✓ عند تعريض النظام إلى اضطرابات كبيرة خرج النظام عن التواقت خلال فترة زمنية قصيرة بوجود نظام التهييج
 فقط. أما عند استخدام مخمد من نوع PID_PSS أعطى تخامداً جيداً للنظام مقارنة بالمخمد التقليدي.
- ✓ يلعب اختيار ثوابت مخمد الاهتزاز دوراً مهماً في تقديم التخامد الإضافي للنظام في الأنظمة المتعددة الآلات، وإلا يمكن أن يؤثر عكسياً مؤدياً إلى عدم استقرار النظام.
 - ✓ بالنتيجة نلاحظ فعالية أداء مخمد الاهتزاز من نوع PID_PSS في الأنظمة متعددة الآلات.

6− **المراجع**:

- [1] LARSEN, E. V.; SWANN, D. A. *Applying Power System Stabilizer Part* I, II, III. IEEE Trans. Power Apparatus and Systems, Vol. PAS-100, No. 6, 1981, 3017-3045.
- [2] VESEL, Y. V.; HARSANYI, L. *PSS Design Via Disturbance Attenuation Method.* Journal of electrical Engineering, Vol. 56, No.3-4, 2005, 110-112.
- [3] KUNDUR, P.; KLEIN, M.; ROGERS, G. J.; ZYWNO, M. S. Application Of Power System Stabilizers For Enhancement Of Overall System Stability. IEEE Trans. Power Systems, Vol.4, No. 2,1989, 614-625.
- [4] ALDEEN, M.; CRUSCA, F. Multimachine Power System Stabilizer Design Based On New LQR Approach. IEE Proc-Gener. Transm. Distrib. Vol. 142, No. 5, September 1995, 494-502.
- [5] RAY, P. S.; DUTTAGUPTA, P. B.; BHAKTA P. Co-Ordinated Multimachine PSS Design Using Both Speed And Electric Power. IEE Proc-Gener. Transm. Distrib. Vol. 142, No. 5, September 1995, 503-510.
- [6] GIBBARD, M. J. Co-Ordination Of Multimachine Stabilizer Gain Settings For A Specified Level Of System Damping Performance. IEE Proc. Vol. 129Pt. C., No. 2, March, 1982, 4548.
- [7] LEFEBVRE, S. *Tuning Of Stabilizers In Multimachine Power Systems*. IEEE Transaction on power Apparatus and systems, Vol. PAS-102, No. 2, February 1983, 290-299.

- [8] KLEIN, M.; ROGERS, G.J.; MOORTY, S.; KUNDUR, P. Analytical Investigation Of Factors Influencing Power System Stabilizers Performance. IEEE Transaction on Energy Conversion, Vol. 7, No. 3, September 1992, 382-390.
- [9] YAO-NAN YU. *Electric Power System Dynamics*. Academic Press, INC. New York, 1983, 255.
- [10] PETER, W. S.; PAI, M. A. *Power System Dynamics and Stability*. Prentic Hall, New Jersey, 1998, 357.
- [11] ANDERSON, P. M.; FOUAD, A. A. *Power System Control and Stability*. Iowa State University Press, 1977, 464.
- [12] ARRILLAGA, J. and AMOLD, C. P. Computer modeling of electrical power systems. John Wiley & Sons, 1983.
- [13] KUNDUR, P. Power System Stability And Control. Mc Graw-Hill, 1994.
- [14] KATSUHIKO, OGATA. *Modern Control Engineering*, Prentic Hall, New Jersey, 2002, 964.
- [14] CHEE-MUN, ONG. *Dynamic Simulation of Electric Machinery*. Prentic Hall New Jersey, 1998, 626.
- [15] IEEE committee report. *Dynamic models for steam and hydro turbines in power system studies*. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-92, No. 6, 1973, 1904-1915.