"طريقة الدفع المتتالي (PUSHOVER ANALYSIS) وتطبيقاتهاعلى أثر تحسين الترب الضعيفة في رفع أداء الإطارات البيتونية المستوية المقاومة للزلازل"

الدكتور قاسم الزحيلي^{*} على نظير محمد^{**}

(تاريخ الإيداع 27 / 10 / 2013. قُبِل للنشر في 13 / 11 / 2013)

abla ملخّص abla

يتضمن البحث آلية تطبيق الدراسة الستاتيكيةاللاخطية على الجمل الإطارية البيتونية المستوية المقاومة للزلازل عبر نمذجة جملة التأسيس (أساس+ تربة) كوسط مرن أي نمذجتها كنوابض مرنة ذات قساوة خطية ودورانية تحت الإطار ومقارنتها مع فرضية نموذج الاستتاد الصلب من حيث الانتقالات والتشوهات و شكل توزع القوى والإجهادات على عناصر الإطار ومن ثم بيان أثر تحسين التربة على قساوة جملة التأسيس وعلى استجابة الإطار للحمولات الجانبية والاستمرار بعملية تحسين التربة حتى الوصول إلى القساوة المطلوبة والتي تساعد في نقل أداء المنشأ من مستوي أداء أعلى مطلوب من المنشأ الوصول إليه وفق استراتيجية التصميم المتبعة ومن ثم الخروج بنتائج وتوصيات مناسبة.

الكلمات المفتاحية: تفاعل التربة والمنشأ - تحسين الترب - الدفع الجانبي المتتالي

^{*} أستاذ مساعد - قسم الهندسة الانشائية - كلية الهندسة المدنية -جامعة دمشق - سورية.

^{*} طالب دراسات عليا (دكتوراه) - قسم الهندسة الانشائية - جامعة تشرين - سورية.

"Nonlinear Static Analysis (push-over analysis) and its Applications on the Effect of Improving Soft Soil on Increasing the Performance of Seismic Resistance Concrete Frame"

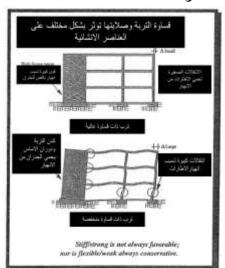
Dr. KASEM ZUHAILI*
Ali Mohamed**

(Received 27 / 10 / 2013. Accepted 13 / 11 / 2013)

∇ ABSTRACT ∇

This research includes the procedures of applying the nonlinear static analysis (pushover analysis) on seismic resistance concrete frame systems by modeling the foundation system (soil + footing) down the structure as an elastic springs and rocking stiffness and comparing them with premise of fixed support in terms of the deformation and displacement, load and stress distribution in frame elements and accordingly clarifying the effect of improving soil on foundation system stiffness and on the responding of frame to lateral loads which helps in moving the structure performance from low level to a higher level that we need from structure to reach following the design strategy that we choose for the structure.

Keywords: soil-structure interaction, push-over analysis, improved soil.


^{*} Associate prof. structural engineering department-civil engineering collage-Damascus university-Syria

^{**} Postgraduate student (P.H.D) - structural engineering department-civil engineering collage-Tishreen university-Syria

مقدمة:

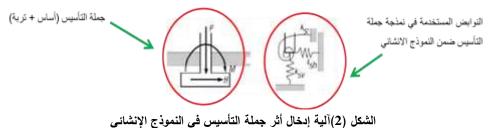
ظهرت مؤخراً مؤسسات علمية تعني بالأبحاث المتعلقة بتأهيل المباني لمقاومة الزلازل سواءً المباني القائمة أو الجديدة واعتمدت هذه المؤسسات على فلسفة تصميم جديدة وطرحت طرق تصميم وتحليل إنشائي مختلفة ومتكاملة تغطى جميع الحالات الممكنة للتصميم على الزلازل ومن هذه المؤسسات الوكالة الفدرالية لإدارة الطوارئ (FEMA) والجمعية التقنية التطبيقية (ATC)حيث وجدت هذه الوكالات أن هناك تفاعلاً بين المنشأ والتربة يحصل عند حدوث الزلازل حيث بينت هذه الوكالة أن فرضية الاستناد الصلب على التربة هي فرضية خاطئة في بعض الحالات حيث إن هذه الفرضية لا تعطى الشكل الصحيح لتوزع القوى والتسارعات بين عناصر المنشأ المقاومة للزلازل ولاتأخذ بالحسبان التفاعل الحاصل بين المنشأ والتربة عند حدوث الزلازل ومدى تأثير تربة الموقع على طيف استجابة المنشأ والدور التخامدي الذي تشكله التربة في مثل هذه الحالات, لذلك قامت هذه الوكالة بتطوير فرضيات جديدة لتمثيل التربة وآثارها على سلوك المنشأ واحتوائه ضمن النموذج التحليلي للمنشأ لمعرفة تأثير التربة على توزيع الحمولات والتسارعات بين عناصر المنشأ واعتمدت هذه الفرضيات بمجملها على نمذجة التربة تحت المنشأ على شكل نوابض انسحابية ودورانية بحيث تعطى السلوك الأمثل للمنشأ والتربة تحت تأثير الزلازل وطرحت طرق وقوانين لتقييم خواص هذه النوابض وطريقة نمذجتها ضمن النموذج التحليلي للمبنى وطريقة أخذ تأثير التفاعل ما بين التربة والمنشأ ضمن التحليل الإنشائي. وبالفعل وجد أنه وعند اعتماد فرضية الاستناد الصلب على التربة فإن القيم التحليلية الناتجة عن تحليل المبنى والقوى الناشئة في العناصر الإنشائية في النموذج تتغير بشكل كبير فيما لو تم اعتماد فرضية النموذج المرن للتربة حيث يحدث في هذه الفرضية إعادة توزيع جديدة للحمولات بين عناصر المنشأ وتختلف قيم القوى والإجهادات التصميمية في عناصر المنشأ وتختلف التسارعات المنقولة إلى كتل المنشأ ويحدث إطالة لدور المنشأ.

وبناءً على ماذكر يمكن القول إنه في حالة الترب الضعيفة والتي بحاجة إلى تحسين فإن خواص التربة الضعيفة المحسنة ستتغير مما يؤدي قطعاً إلى تغير قيم خصائص النماذج النابضية للتربة تحت المنشأ في فرضية الاستتاد المرن وهذا بدوره سيؤدي إلى تغير استجابة المنشأ للهزة الأرضية سلباً أو إيجاباً (تبعاً للجملة المقاومة للزلازل) وإعادة تشكل جديدة للمفاصل اللدنة في العناصر الإنشائية وتغير في انتقالات المبنى وفي قيمة الانتقال الهدف والشكل التالي يوضح هذا الأثر:

اذاً يمكن القول أن الثراب القوية الصلبة ليست المفضلة دائماً والا الثراب الضعيفة المراثة هي المفضلة وإنما يمكن تحديد قساوة الثرابة الافضل للجملة الانشائية المستخدمة المقارمة الحمرالات الحائية

الشكل (1)أثر التربة على سلوك المنشأ (ATC-40)

أهمية البحث وأهدافه:


تم في أبحاث سابقة متعلقة بتفاعل التربة مع المنشأ (SSI)نمذجة الترب تحت المنشآت والأثر المتبادل بين هذه العناصر عند حدوث الزلازل دون أخذ أثر التحكم في قساوة التربة المحسنة للوصول إلى استراتيجية التصميم المتبعة للمبنى.

تهدف هذه الدراسة إلى الوصول إلى قساوة التربة الأنسب والتي تعطي أفضل أداء للمنشأ ضمن استراتيجية التصميم المتبعة باستخدام طريقة الدفع المتتالي (push-over analysis) والمطورة من قبل الوكالة الفدرالية لإدارة الطوارئ (FEMA) والجمعية التقنية التطبيقية (ATC) واستخدام برنامج VER-14.1- - SAP2000.

طرائق البحث ومواده:

1- آلية إدخال تأثير تربة الموقع وجمل التأسيس على أداء المنشأ:

يبين الشكل (2) إمكانية نمذجة التربة والأساسات تحت المنشأ كنوابض مرنة ذات قساوة K من أجل أخذ التأثير الحقيقي لتربة الموقع ولجملة الأساسات المختارة على الجملة الإنشائية عند حدوث الزلازل حيث تم الاستعاضة عن الانتقالات الأفقية بنابض انسحابي قساوته Ksv والدوران بنابض دوراني قساوته Ksv.

وفيما يلي نستعرض طرق حساب النماذج النابضية لجمل التأسيس وفقاً لـ (FEMA):

$$G=rac{E}{2(1+artheta)}$$
يعطى معامل القص G للتربة بالعلاقة:

حيث معامل بواسون يفرض مساوياً إلى 0.35 من أجل الترب غير المشبعة و 0.5 من أجل الترب المشبعة.

ho معامل القص الابتدائي G_0 يتعلق بسرعة أمواج القص عند التشوهات المنخفضة

((m/sec) و
$$V_s$$
 عبر العلاقة: $oldsymbol{G_0} = oldsymbol{
ho}.$ عبر العلاقة:

$$G_0=rac{\gamma.V_{
m s}^2}{
m g}$$
وعبر تحويل الكتلة الحجمية إلى الوزن الحجمي يصبح

كما يمكن حساب معامل القص الابتدائي G_0 من عدد الضربات النظامية المصححة والإجهاد

$$m{G_0}\cong m{20,000} \; (m{N_1})_{m{60}}^{m{1/3}}.\sqrt{m{\sigma_0'}} : \!\! \sigma_0'$$
 الشاقولي الفعال

حيث إن $\left(N_{1}\right)_{60}$: عدد الضربات النظامية من أجل ton بالقدم المربع و 60% من الطاقة الفعالة للمطرقة.

$$\sigma_0^{'}=\gamma_t.\,d-\gamma_w.\,(d-d_w)$$
: الإجهاد الفعال الشاقولي ويعطى بالعلاقة $\sigma_0^{'}=\gamma_t.\,d-\gamma_w$

معظم الترب لاخطية بطبيعتها ومعامل أمواج القص ينخفض مع زيادة تشوه القص.أما في حالة التشوهات الكبيرة فإن سرعة أمواج القص V_s' ومعامل القص الفعال لقص يمكن تقديره بالاعتماد على معامل التسارع الذروي الفعال للزلزال المأخوذ بالحسبان حسب الجدول (1).

الجدول (FEMA-356) -(1) الجدول

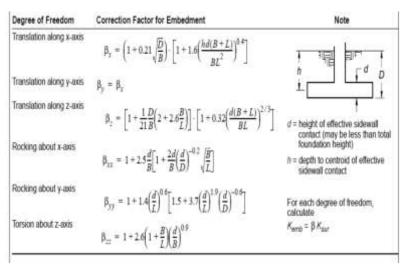
معامل القص الفعال وسرعة أمواج القص			
	$\left. rac{S_{xs}}{2.5} ight _{2.5}$ لفعال	التسارع الذروي اا	
	0.1	0.7	
نسبة القص الفعال إلى القص الابتدائي (G/G0)	0.5	0.2	
نسبة السرعة الفعالة إلى السرعة الابتدائية (V's/Vs)	0.71	0.45	

كما يمكن حساب معامل القص الفعال Gبالاعتماد على قيمة G_0 والتسارع الذروي الفعال وتصنيف الموقع والجدول (2) التالى:

(FEMA-356) (2) الجدول

`		, , ,		
نسبة معاملات القص الفعالة (G/G0)				
$\frac{S_{xs}}{2.5}$ لتسارع الذروي الفعال $\frac{S_{xs}}{2.5}$			التسارع	
تصنيف الموتع	=0	=0.1	=0.4	=0.8
Α	1.0	1.0	1.0	1.0
В	1.0	1.0	0.95	0.9
С	1.0	0.95	0.75	0.6
D	1.0	0.9	0.5	0.1
E	1.0	0.6	0.05	*
F	*	*	*	*

وبالاعتماد على القساوة النسبية للأساسات وتربة التأسيس فإنه يمكن حساب قساوة نوابض جملة التأسيس باستخدام الطريقة التالية:


بالنسبة للأساسات السطحية الصلبة المسنودة على تربة التأسيس فإن النموذج النابضي يجب أن يمثل قساوة جملة التأسيس. أما قيم هذه القساوة فيتم حسابها كالتالى:

Degree of Freedom Stiffness of Foundation at Surface Note $K_{3,34r} = \frac{GB}{2-v} \Big[3.4 \Big(\frac{L}{B}\Big)^{0.85} + 1.2 \Big]$ Translation along y-axis $K_{y,34r} = \frac{GB}{2-v} \Big[3.4 \Big(\frac{L}{B}\Big)^{0.85} + 0.4 \frac{L}{B} + 0.8 \Big]$ Translation along z-axis $K_{z,14r} = \frac{GB}{1-v} \Big[1.55 \Big(\frac{L}{B}\Big)^{0.75} + 0.8 \Big]$ Rocking about x-axis $K_{z,1,4r} = \frac{GB^3}{1-v} \Big[0.47 \Big(\frac{L}{B}\Big)^{2.4} + 0.034 \Big]$ Crient axes such that $L \ge B$ Torsion about z-axis $K_{zz,34r} = GB^3 \Big[0.53 \Big(\frac{L}{B}\Big)^{2.45} + 0.51 \Big]$

أ- حالة الأساسات على سطح التربة مباشرة (FEMA-356)

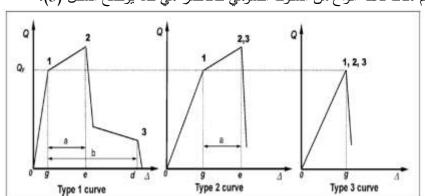
ب- حالة الاساسات المغروسة في التربة (FEMA-356)

باستخدام المعادلات الموضحة في الشكل السابق يمكن حساب قساوات النوابض عبر ضرب هذه القيم بمعاملات تصحيح العمق وذلك حسب ما توضح المعادلات التالية:

2. طريقة التحليل الستاتيكياللاخطي:

تعتمد طريقة التحليل الستاتيكياللاخطي على معرفة الطاقة القصوى لتحمل المنشأ تحت تأثير الهزة الأرضية الزلزالية في المنطقة التي يقوم عليها المبنى وذلك باستخدام خصائص المبنى من تسليح وبيتون ومواد أخرى ومقدرة هذا المبنى على إعطاء قيم كبيرة للانتقال دون أن ينهار وباستخدام أيضاً قيم التسارعات الزلزالية في المنطقة المدروسة ونوع التربة المقام عليها المنشأ. والفقرات التالية ستوضح طرق وأسس الحساب المتبعة في هذه الطريقة.

2.1 الأسس العامة للطريقة:


إن الفلسفة الحالية للتصميم على الحمولات الجانبية (الزلزالية والإنفجارات و.....) تعتمد على مايسمى بالمطاوعة والتي تعرف بأنها نسبة التشوه الأقصى إلى التشوه عند بدء الخضوع والتي تسمح للمبنى بامتصاص الطاقة الناجمة عن الاهتزاز وتبديدها بوساطة التشوهات اللدنة وبحيث يتم تجنب الانهيار الهش للمنشأ حيث يطلب من جميع العناصر المكونة للجملة الإنشائية إعطاء سهوم كبيرة بالقرب من قدرة تحملها الأعظمية.

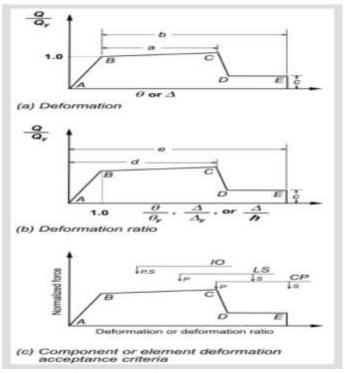
1.1.2 مستويات الأداء الزلزالي وأهداف التأهيل:

إن لكل منشأ غاية تصميمية وغرضاً وظيفياً يطلب منه بعد حدوث الزلزال والذي يحدد هذا الغرض هو طبيعة المنشأ ووظيفته والمالك والمهندس المصمم والمعماري وبناءً عليه تم تقسيم أداء المنشأ إلى أربعة مستويات هي:

- 1. المستوى العملياتي (operational level): حيث يبقى سلوك المنشأ في الحالة المرنة ولاتوجد أية أضرار في الجملة الإنشائية مع أضرار طفيفة بالعناصر المعمارية.
- 2. مستوى الإحلال المباشر:(immediate occupancy level): حيث يسمح لبعض مكونات الجملة الإنشائية بتجاوز مرحلة الخضوع والدخول في مرحلة التلان مع بقاء المنشأ قابلاً للاستخدام المباشر دون أية عوائق أو مخاطر من حدوث انهيارات جزئية.
- 3. مستوى الحفاظ على الأرواح (life safety level): يبقى المنشأ مستقراً والانهيارات في العناصر المعمارية تحت السيطرة بحيث لا تسبب خسائر بشرية.
- 4. مستوى منع الانهيار (collapse prevention level): يبقى المنشأ قائماً ولكن في وضعية سيئة جداً وهناك انهيارات في بعض العناصر الإنشائية والمعمارية.

ولمعرفة مستوى الأداء الزلزالي للمنشأ تم تطوير العديد من المخططات والمنحنيات والتي تعتمد بشكل أساسي على سلوك المنشأ تحت تأثير التحميل المتكرر الوحيد الشوط وبحيث يتم رسم علاقة الانتقال مع القوة المتولدة عنه لنحصل على مايسمى بمنحني الطاقة للمنشأ (capacity curve) والذي يحدد بدقة كبيرة جداً وضع المنشأ ومستوى الأداء الزلزالي له عبر نقطة منه تدعى الانتقال الهدف (target displacement) والتي تعرف بأنها أكبر انتقال متوقع للمنشأ تحت تأثير الهزةالأرضية في المنطقة المدروسة وتحت تأثير هذا الانتقال يتم تحديد شكل تشوهات العناصر والمركبات المؤلفة منها الجملة الإنشائية ومن خلال التشوهات الحاصلة لهذه العناصر وبجمع تشوهات أحمال الثقالة يتم تحديد التشوه النهائي للعناصر وباستخدام منحنيات (الانحناء العزم) أو (الانتقال القوة) المستنتجة للعناصر تحت تأثير تحميل مشابه نستطيع تحديد مستوى الأداء الزلزالي لكل عنصر من الجملة ومنه نستطيع تحديد المطاوعة النهائية للجملة كاملة مع تحديد مستوى الأداء الزلزالي لكل عنصر من الجملة ومنه نستطيع تحديد المطاوعة النهائية للجملة كاملة مع تحديد مستوى الأداء الزلزالي لكل عنصر من الجملة مع تحديد مستوى الأداء الزلزالي لكل

بشكل عام هناك ثلاثة أنواع من السلوك التشوهي للعناصر هي كما يوضح الشكل (3):


الشكل (3) مخططات القوة - التشوه للعناصر (356-FEMA)

نلاحظ أنه في النوع الأول يمتلك العنصر مطاوعة عالية تتمثل في قدرته على إعطاء قيم كبيرة للتشوه عند وصوله إلى قدرة تحمله القصوى.

أما النوع الثاني فهو أقل مطاوعة من الأول حيث إن هذا النوع من العناصر يبدي قليلاً من التشوه عند وصوله إلىطاقة التحمل القصوى قبل أن ينهار انهياراً هشاً.

والنوع الثالث الأخير يصنف ضمن العناصر ذات السلوك الهش (غير مطاوع) نظراً لانهيار العنصر مباشرة بعد وصوله إلى قدرة التحمل الأعظمية.

وبناءً على المخططات السابقة نستطيع الآن تحديد مستوى أداء العنصر عبر تحديد قيمة التشوه التي وصل البيها من جراء الأحمال التي يخضع لها كما يوضح الشكل (4):

الشكل (4) مخططات القوة - التشوه المعممة للعناصر الإنشائية (356-FEMA)

نلاحظ من المنحنيات السابقة وجود أسهم تدل على مستوى أداء العنصر مع حدود التشوه المناسبة لكل مستوي أداء.

2.1.2 تصنيف التربة:

قامت وكالة (FEMA) بتصنيف مقطع التربة اعتماداً على نوع التربة ومقاومتها وسرعة أمواج القص فيها كالتالى:

- Class A: صخرِ قاسِ فيه سرعة أمواج القص أكبر من 1525 m/sec.
 - Class B: صخر مع سرعة أمواج قص 1525 Class B
 - Class C: تربة كثيفة جداً مع سرعة أمواج قص 762 VS >365 C.
 - Class D: تربة موقع مع 365 VS >365.
 - .1000<Su<2000 of 15<N<50 of

• Class E: أي طبقة مع أكثر من 3m غضار طري تعرف كتربة لدنة ثابت اللدونة فيها 20<Pl أو محتوى مائي W>40% و Su<500 و Vs<182m/sec.

ملاحظة هامة جداً: أي معلومات تعتبر غير كافية لتحديد نوع التربة من A إلى D يفترض بأن نوع التربة هو E.

• Class F: تربة بحاجة إلى اختبارات حقلية ومعالجة بالموقع.

3.1.2 ثوابت مخطط طيف الاستجابة التصميمي:

باستخدام قيم التسارعات الأرضية الموجودة على الخارطة الزلزالية Ssو Sl ومن أجل نوع التربة المعتمد وفقاً للتصنيف السابق يمكن حساب ثوابت مخطط طيف الاستجابة التصميمي Sxs و Sx1 من المعادلتين التاليتين:

 $Sxs = Fa \times Ss$

 $Sx1 = Fv \times S1$

حيث Fa و Fv : معاملات الموقع والمحددة عبر الجدولين التاليين (3-4):

البحدول (4) فَيِم المعامل FEMA-356) البحدول

البحدول(3) فَيِم المعامل FEMA-356) البحدول

	فِهِ المعامل Fv كابع لنصنيف الموفع والنسارع الطيفي S1				
	S1	ر 1 ئانبة .	پغي عند دور	سارع الط	a
ئصنىف لموقع	Ss = 0.1	Ss = 0.2	Ss =	Ss =	Ss =
					0.5
A	0.8	0.8	0.8	0.8	0.8
В	1	1	1	1	1
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2	1.8	1.6	1.5
Е	3.5	3.2	2.8	2.4	*
F	4	4	4	4	*

	فِم المحامل Fa تنابع لنصنيف الموفع والنسارع الطيفي Ss				
	Ss :	ا ر تن صيرة	ي عند الادو	ارع ال طية	ıŭ.
تصنيف الموقع	Ss=	Ss	Ss=	Ss=	Ss -
شوتي	0.25	= 0.5	0.75	1.0	1.25
Α	0.8	0.8	0.8	0.8	0.8
В	1	1	1	1	1
С	1.2	1.2	1.1	1	1
D	1.6	1.4	1.2	1.1	1
E	2.5	1.7	1.2	0.9	4
F	4	46	4	4	4

توصيف المبنى المدروس:

- إطار مستوي من البيتون المسلح في مبنى مؤلف من أربعة طوابق, يتعرض هذا الإطار إلى أحمال شاقولية موزعة بانتظام حية وميتة كالتالى:

DL = 0.4 KIP/ft = 0.6 ton/m'

LL = 0.2 KIP/ft = 0.3 ton/m'

يقع هذا المبنى في مدينة دمشق.

مقاطع الجوائز عبارة عن مستطيل أبعاده 60)cm مقاطع

أما الأعمدة فمقاطعها أيضاً عبارة عن مستطيل أبعاده 60)cm أما

يستند هذا المبنى على تربة سيلتية غضارية لدنة ذات مواصفات سيئة سواءً تحت تأثير الأحمال الشاقولية حيث ورد في تقرير ميكانيك التربة على أنها تربة ذات انهيار فجائي, كما أنها ضعيفة تحت تأثير الهزات الأرضية حيث يوجد احتمال لحدوث هبوطات مفاجئة للمبنى نتيجة للصدم التفاضلي ومواصفات التربة كالتالي:

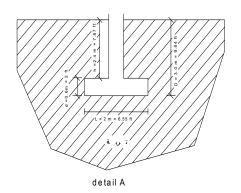
$$q_{all}=1.1rac{\mathit{Kg}}{\mathit{cm2}}=2250~psf$$
 قدرة تحمل التربة

تصنيف التربة وفقاً لنظام التصنيف الموحد هو MH

 $V_{\rm s}=135~m/sec$ سرعة أمواج القص

$$\gamma = 0.05 rac{kg}{cm^3} = 100~pcf$$
 الكثافة الوزنية

تم استخدام جملة أساسات منفردة مع شيناجات رابطة حيث إن أبعاد الأساسات هو 60 cm * 200 * 60 أو ما يعادل ft \$\frac{1}{2}\$ و ما يعادل ft \$\frac{1}{2}\$ و ما يعادل ft \$\frac{1}{2}\$


أما الشيناجات فمقطعها مستطيل أبعاده cm * 60 cm أو ما يعادل 1 * 2 ft

عمق التأسيس D = 3.0 m = 9.85 ft

الشكلين (5) و (6) يوضحان ما سبق:

الشكل (5)إطار مستوي ذو أربع فتحات مؤلف من أربع طوابق

الشكل (6) التفصيلة A-A تبين نموذج الأساس-التربة

ملاحظة: تم استخدام برنامج (SAP-2000-V 14.1) في الحل وجميع القيم والنتائج ستؤخذ من البرنامج مباشرة وتوضع في حل المثال.

تم اعتماد برنامج plaxis-3d من أجل تحديد التغيرات الطارئة على مواصفات التربة عند إجراء عملية التحسين حيث إن هذا البرنامج يعتبر من أفضل البرامج العالمية في مجال نمذجة التربة وتحديد معظم خصائصها الستاتيكية والديناميكية وذلك بالاعتماد على آلية نمذجة طبقات التربة باستخدام طريقة العناصر المحددة.

النتائج والمناقشة:

1- من أجل إجراء التحليل الستاتيكياللاخطي يجب في البداية تحديد جميع المعاملات المستخدمة في الحساب والتي يجب إدخالها في البرنامج للحصول على المنحنيات والقيم الناتجة ويتم تحديد هذه المعاملات كالتالي:

المبنى يقع في مدينة دمشق وباستخدام مخططات (FEMA) الزلزالية ومقارنتها مع الخارطة الزلزالية لسوريا $S_{\rm s}=0.6~g$ نجد:

التسارع الطيفي من أجل $S_1=0.22~g$

مواصفات تربة الموقع تعطى بأن تصنيف التربة هو (S_E) .

باستخدام الجداول الواردة في (FEMA) نستطيع إيجاد قيم معاملات الموقع Fa من الجدولين (3) و (4) كالتالى:حيث نجد أن: Fa = 1.5. و نجد أن: Fv = 3.12.

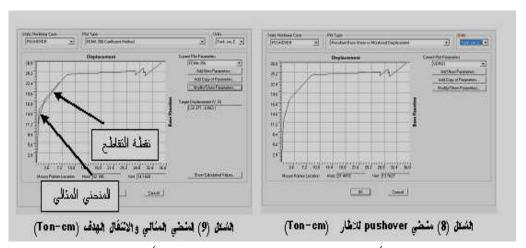
 $S_{
m xs} = F_a * S_s = 0.9$ وبالتالي تكون ثوابت مخطط طيف الاستجابة: $S_{
m x1} = F_v * S_1 = 0.686$


أما ثوابت حساب الانتقال الهدف $\delta_{
m t}$ فهي كالتالي:

C2 = 1 معامل التعديل C2 مساوٍ الواحد كون التحليل المستخدم الخطي أي

push – معامل التعديل C3 مساوي للواحد كون القساوة اللاحقة للخضوع موجبة حسب ما سيوضحه منحني over أي C3 = 1.

معامل التعديل Cm يؤخذ من جداول (FEMA) من أجل إطارات بيتونية ومبنى مؤلف من أكثر من ثلاثة طوابق وبالتالي 0.9 = Cm. بعد تحديد القيم السابقة نستطيع الآن وباستخدام برنامج (SAP2000 إجراء تحليل ستاتيكيلاخطي للإطار حيث Te يتم حسابه عن طريق البرنامج ويتم تحديد قيمة الانتقال الهدف.

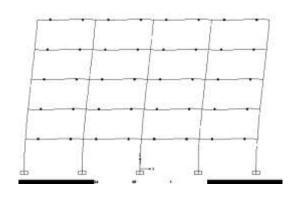

- الانتقالات ستؤخذ من حالة سابقة والتي تم تعريفها على أنها GRAVE أما الحمولات المستخدمة في دفع المنشأ ونسبة توزيع قوة القص القاعدية رأسياً بين الطوابق في كل خطوة فتؤخذ من حالة التحليل النمطي وذلك باستخدام النمط الأول المسيطر وينتج لدينا أنه وعند قيمة الانتقال الهدف فإنه قد تشكلت مفاصل لدنة في جميع أعمدة الإطار حسب ما يوضح الشكل (7).

الشكل (7) أماكن توضع المفاصل اللدنة

- نقوم الآن بإجراء عملية التحليل للمنشأ فنجد أن منحني PUSH-OVER أو ما يسمى بمخطط الانتقال نلاحظ من المنحني المبين في الشكل (8) أن الإطار يمتلك مطاوعة جيدة حيث إن عتبة اللدونة طويلة نسبياً كما نلاحظ أن الإطار وعند انتقال مساو إلى 25.35 cm قد حدث فيه هبوط في الصلابة واستمر هذا السلوك حتى نهاية الانتقال المحدد لعقدة التحكم في التحليل والمساوي إلى 35 cm.

2- من أجل إيجاد المنحني المثالي ونقطة النقاطع مع منحني PUSHOVER وتحديد قيمة الانتقال الهدف نقوم بإدخال المعاملات التي أوجدناها سابقاً للبرنامج والذي يقوم تلقائياً بعملية تحديد المنحني المثالي أو ما يسمى (idealized curve) وتحديد نقطة النقاطع وجميع القيم الحسابية المطلوبة وذلك عبر الأشكال التالية:

الانتقال المحظ من الشكل (9) أن قيمة الانتقال المحدف $\delta_{
m t} = 6.56~cm$ وأن قيمة القص القاعدي المقابلة لمهذا $V = 22.37~{
m ton}$ الانتقال


3- أما قيم المعاملات المستخدمة في الحساب والمعاملات المحسوبة من أجل تحديد قيمة الانتقال الهدف فهي كما في الجدول (5) التالي:

الجدول (5) المعاملات المستخدمة في حساب الإنتقال الهدف

	- (-) 53
Item	Value
C0	1.3704
C1	1.2632
C2	1
C3	1
Sa	0.9
Те	0.4138
Ti	0.3705
Ki	3010.534
Ke	2412.799
Alpha	0.0536
R	9.1271
Vy	14.6731
Weight	165.3372
Cm	0.9
•	·-

4- سنقوم الآن بتحديد قيم الانتقالات عند أوضاع المنشأ المختلفة وتحديد مستوى أداء العناصر للإطار ومستوى الأداء العام للإطار ككل بالإضافة إلى المفاصل اللدنة المتشكلة عند كل انتقال ووضع هذه المفاصل والمخططات المثالية لسلوكها وأدائها وذلك كما يلى:

وضع المنشأ عند انتقال مساوِ لقيمة الانتقال الهدف هو كما يوضحه الشكل (10) حيث نلاحظ أن المفاصل اللدنة قد تشكلت في جميع الجوائز وكانت بين مرحلة الخضوع ومرحلة الإحلال المباشر أي بين النقطة B والنقطة IO,أما الأعمدة فلم يتشكل فيها أي مفصل لدن وبالتالي يمكن القول إن سلوك الأعمدة مازال في المرحلة الخطية المرنة أي بين النقطة A والنقطة B:

الشكل (10) المفاصل اللدنة المتشكلة في الاطار عند الانتقال الهدف

ومن الممكن مشاهدة مخطط القوة – التشوه المثالي لأحد المفاصل اللدنة ومعرفة وضعه وقيمة الدوران وقيمة العزم المسبب لوصول هذا المفصل إلى هذه المرحلة:

| Select Harge | Selected Frames Only | Protein Object | Select Load Case | Select Load C

الشكل (11) مخطط القوة - التشوه المثالي لأحد المفاصل اللدنة (Ton-cm)

إذاً عبر التقييم العام للإطار يمكن القول إن الإطار في مرحلة الإحلال المباشر IO وكانت جميع الجوائز قد دخلت في مرحلة التلدن ولكن ما زال لديها احتياطي لدن كبير قبل الانهيار.

5- تحديد قيم قساوة النوابض المستخدمة في نمذجة التربة مع الأساسات (جملة التأسيس) تحت النموذج الإنشائي العام:

باستخدام المعطيات في نص المسألة فيما يتعلق بالتربة ومواصفاتها ونوع الأساسات المستخدمة وأبعادها وعمق التأسيس نستطيع وباستخدام المعادلات الواردة في (FEMA) يمكن حساب قيم القساوة للنوابض المستخدمة في تمثيل جملة التأسيس ضمن النموذج الإنشائي.

الجدول التالي يبين قيم المدخلات الواجب استخدامها في عملية حساب قساوات النوابض الانسحابية والدورانية:

	المعاملات المستخدمة	
ملاحظات	في حساب قساوات	القيم
	التربة	
عرض الاساس	В	5.25ft
طول الاساس	L	6.55ft
سماكة الاساس	d	2ft
المسافة إلى سطح	h	7.87ft
الاساس	"	7.0711
عمق التأسيس	D	9.84ft
سرعة امواج القص	Vs	440ft/sec
الكثافة الوزنية	Υ	100pcf
تسارع الجاذبية	g	32ft/sec2

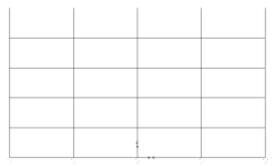
الجدول (6) المعاملات المستخدمة في حساب قساوات التربة

عدد ضربات المطرقة	(N1)60	
الاجهاد الاولي الفعال	σ'0	
معامل بواسون	θ	0.35
معامل مرونة التربة	Ē	

باستخدام القيم الواردة في الجدول (6) نجد قيم القساوة النابضية الانسحابية كون الإطار المدروس هو إطار مستوي:

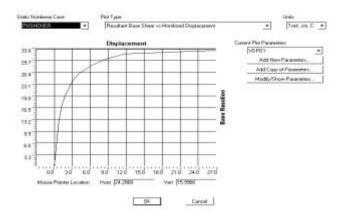
الجدول (7)قساوة جملة التأسيس في حالة الاستنادعلي سطح التربة مباشرة

	7 /	
قساوة جملة التأسيس في حالة الاستناد		
على سطح التربة مباشرة		
Kx,sur	1184068 pound/ft	
Ky,sur	1206948pound/ft	
Kz,sur	1542048pound/ft	

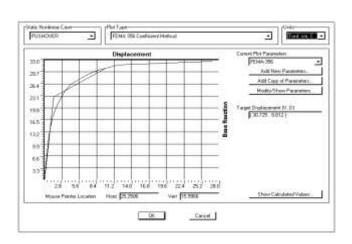

الجدول (8)قيم معامل التصحيح من أجل عمق التأسيس

	i a company of the co	
عوامل التصحيح من أجل عمق التأسيس		
βх	3.194562	
βу	3.194562	
βz	2.613477	

الجدول (9)قيم القساوات النهائية


قيم القساوات النهانية		kip/ft
Kx	3782580	3782.58
Ку	3855672	3855.672
Kz	4030109	4030.109

نقوم الآن بإدخال قيم هذه القساوات للنوابض المستخدمة في تمثيل جملة التأسيس ضمن النموذج الإنشائي السابق حيث يقوم البرنامج تلقائياً بتحويلها إلى الواحدات الدولية SI ويكون شكل النموذج الجديد كالتالي:

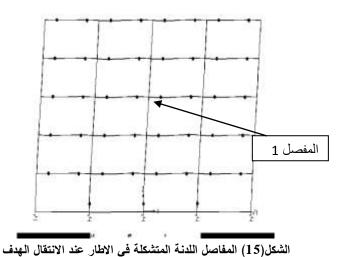

الشكل (12) النموذج الإنشائي مع النوابض الممثلة لجملة التأسيس

نقوم الآن بإجراء تحليل ستاتيكيلاخطي للإطار باستخدام نفس الخطوات الواردة في الطلبات السابقة أي مع اعتبار أن الاستتاد صلب فنجد أن منحني pushover الناتج للإطار بالإضافة إلى المنحني المثالي ونقطة التقاطع التي تعبر عن الانتقال الهدف وقيمة هذا الانتقال هي كالتالي:

الشكل (13) منحنى pushover للاطار (13)

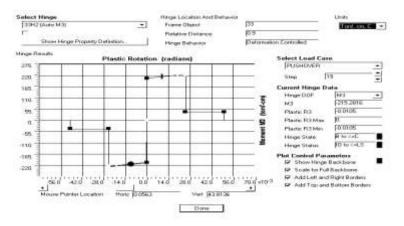
نلاحظ أن قيمة الانتقال الهدف مساوية إلى 9.81 cm وكانت قوة القص القاعدية عندها مساوية إلى 30.725 ton قيمة الإطار وصل إلى قيمة 27 cm قبل أن يحدث فيه انهيار كما نلاحظ امتلاك الإطار لطاقة عالية من اللدونة.

الشكل (14) المنحنى المثالى والانتقال الهدف (Ton-cm)


أما قيم المعاملات المستخدمة في الحساب والمعاملات المحسوبة من أجل تحديد قيمة الانتقال الهدف فهي كما في الجدول (10) التالي:

الجدول (10) قيم المعاملات المستخدمة في حساب الانتقال الهدف

Item	Value
C0	1.3666
C1	1.1552


C2	1
C3	1
Sa	0.9
Te	0.557
Ti	0.4593
Ki	2361.686
Ke	1605.663
Alpha	0.052
R	6.0886
Vy	23.3765
Weight	175.7172
Cm	0.9

وبالتالي وضع المنشأ عند انتقال مساوِ لقيمة الانتقال الهدف هو كما يوضحه الشكل (15) حيث نلاحظ أن المفاصل اللدنة قد تشكلت في جميع الجوائز قسم منها بين مرحلة الخضوع ومرحلة الإحلال المباشر أي بين النقطة B والنقطة 10 المفاصل ذات اللون الزهري أما القسم الآخر فكان بين مرحلة الإحلال المباشر ومرحلة أمان الحياة أي بين النقطة Oاوالنقطة LS,أما الأعمدة فتشكل في ثلاث منها مفاصل لدنة وكانت بين مرحلة الخضوع ومرحلة الإحلال المباشر أي بين النقطة B والنقطة IO.

ومن الممكن مشاهدة مخطط القوة - التشوه المثالي للمفاصل اللدنة المشار إليها على الشكل (15) ومعرفة

وضعه وقيمة الدوران وقيمة العزم المسبب لوصول هذا المفصل إلى هذه المرحلة:

الشكل (16) حالة المفصل 1 (Ton-cm)

إذاً عبر التقييم العام للإطار يمكن القول إن الإطار في مرحلة أمان الحياة L.S وكانت جميع الجوائز بالإضافة إلى ثلاثة أعمدة قد دخلت في مرحلة التلدن ولكن ما زال لديها احتياطي لدن كبير قبل الانهيار.

6- عبر مقارنة حالة فرض الاستتاد صلب على التربة وحالة الاستتاد المرن نجد:

- الدور الاهتزازي لنمط الاهتزاز المسيطر وهو النمط الأول مساو إلى 0.37 sec في حالة الاستتاد الصلب أما في حالة الاستتاد المرن أصبح الدور مساوياً إلى 0.465 sec أي أن الدور أكبر بحوالي 25 من حالة الاستتاد الصلب وهذا ما يسمى بمعامل إطالة الدور حيث وجد أن الدور عند أخذ تأثير تفاعل التربة مع المنشأ يصبح أكبر من الدور الحقيقي للمنشأ في حالة الاستتاد الصلب.

- الانتقال الهدف للإطار في حالة الاستناد الصلب مساوٍ إلى 6.56 cm وكانت قوة القص القاعدية المقابلة لهذا الانتقال مساوية إلى 22.37 ton وكان مستوي أداء المنشأ في مرحلة الإحلال المباشر ولم يحصل أي تلدن في الأعمدة بينما دخلت جميع عقد الجوائز في مرحلة الخضوع ولكنها لم تتجاوز مرحلة الإحلال المباشر أي المفاصل كانت بين النقطة B والنقطة O من مخطط العزم - الدوران للعنصر.

أما في حالة الاستناد المرن فكانت قيمة الانتقال الهدف مساوية إلى 9.81 cm وكانت قوة القص القاعدية المقابلة لهذا الانتقال مساوية إلى 30.725 ton وكان مستوي أداء المنشأ في مرحلة أمان الحياة (L.S) ودخلت ثلاثة أعمدة في مرحلة التلدن وكانت حالة المفاصل اللدنة للأعمدة بين النقطة العول من منحني العزم – الدوران للعنصر كما تلدنت جميع عقد الجوائز وتجاوزت بعض هذه العقد مرحلة الإحلال المباشر واقتربت من النقطة المحددة لمستوى أمان الحياة L.S.

- كما أن جميع القوى والعزوم التصميمية قد تغيرت حيث حدث إعادة توزيع جديد للقوى بين العناصر الإنشائية عند تغيير حالة الاستناد من الصلب إلى المرن وهذا بدوره يؤدي إلى تغيير القيم التصميمية للمقاطع من أبعاد وقيم تسليح.

وبالتالي وعبر المقارنة السابقة نستطيع أن نقول إن هناك فرقاً كبيراً جداً بين أداء المنشأ في حالة الاستتاد الصلب وحالة الاستتاد المرن وهذا يدل على أهمية أخذ أثر تفاعل التربة والمنشأ بالحسبان في التحليل والتصميم الإنشائي وخاصة في حالة المباني التي يتراوح دورها بين (0.3-0.1) ثانية حيث يكون أثر تفاعل التربة والمنشأ أعظمياً.

7- سنقوم بعملية تحسين لتربة الموقع الذي سيقام عليها المنشأ بحيث نتخلص من جميع المشاكل التي من الممكن بأن تتسببها للمنشأ في المستقبل, وباستخدام برنامج (PLAXIS) باقتراح حل استبدال التربة لعمق 4 بتربة محسنة عبارة عن خليط من البحص الجيدالتدرج ذي تصنيف GW وفقاً لنظام التصنيف الموحد ورمل المازار ذي التصنيف SW مع السيلت الرملي العالي اللدونة ذي التصنيف MH من أجل زيادة قدرة التماسك وأن يتم استبدال التربة على طبقات ذات سماكة لا تزيد عن 25 cm وأن لا تقل النتائج عن %95.

-وبعد إجراء عملية التحسين وعمل الاختبارات عليها كانت النتائج الواردة في تقرير ميكانيك التربة كالتالي: سرعة أمواج القص عند منسوب التأسيس $V_s = 1950 \; \mathrm{ft/sec}$

y = 130 pcf الكتلة الوزنية للتربة الجديدة

8- باعتماد المواصفات الجديدة للتربة يمكن حساب القساوات الجديدة للنوابض الممثلة لجملة التأسيس
 والقيم الناتجة موضحة في الجداول التالية:

تصنيف الموقع الجديد هو C.

باستخدام الجدولين (3) و (4) نستطيع إيجاد قيم معاملات الموقع Fa كالتالي:

.Fa = 1.16

.Fv = 1.58

وبالتالي تكون ثوابت مخطط طيف الاستجابة:

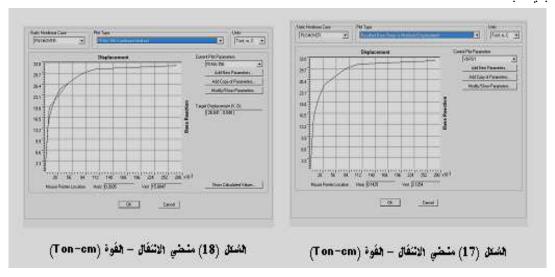
$$S_{xs} = F_a * S_s = 0.696 S_{x1} = F_v * S_1 = 0.348$$

 $.S_{xs}/2.5 = 0.278$ وبالتالي

 $^{-6}/_{G_0}=0.83$ ومنه وباستخدام الجدول (2) يكون

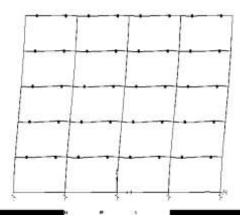
وبالتالي تكون القيم الجديدة لقساوة التربة هي كما توضحه الجداول التالية:

البحدول (11)قساوة جملة الناسيس في حالة الاستناد على سطح التربة مياشرة البحدول (12)عوامل التصنيح من أجل عمق الناسيس

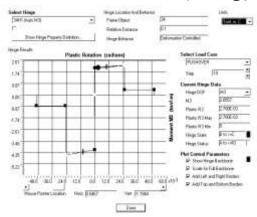

عوامل التصحيح من أجل		
عمق التأسيس		
β×	3.194562	
βу	3.194562	
βz	2.613477	
β∞	2.845817	
βуу	2.724799	
βzz	2.965159	

فساوة جملة التأسيس في حالة الاستناد		
على سطح الثرية مباشرة		
Kx,sur	2.09E+08	
Ky,sur	2.13E+08	
Kz,sur	2.72E+08	
Kxx,sur	1.71E+09	
Kyy,sur	2.38E+09	
Kzz,sur	2.64E+09	

الجدول (13)قيم القساواتالانسحابية النهائية


قيم القساوات النهائية		kip/ft
Kx	6.68E+08	668024.2
Ку	6.81E+08	680932.5
Kz	7.12E+08	711739.1

9- باستخدام قيم القساوة الجديدة المبينة في الطلب السابق وبعد إدخالها إلى البرنامج وإعادة تحليل الإطار من جديد نجد:


نلاحظ أن قيمة الانتقال الهدف مساوية إلى 4.6 cm وكانت قوة القص القاعدية عندها مساوية إلى 26.641 ton. كما نلاحظ أن الإطار وصل إلى قيمة 27 cm قبل أن يحدث فيه انهيار كما نلاحظ امتلاك الإطار لطاقة عالية من اللدونة.

وضع المنشأ عند انتقال مساوِ لقيمة الانتقال الهدف هو كما يوضحه الشكل (19) حيث نلاحظ أن المفاصل اللدنة قدتشكلت في جميع الجوائز وكانت بين مرحلة الخضوع ومرحلة الإحلال المباشر أي بين النقطة B والنقطة IO,أما الأعمدة فلم يتشكل فيها أي مفصل لدن وبالتالي يمكن القول إن سلوك الأعمدة مازال في المرحلة الخطية المرنة أي بين النقطة A والنقطة B:

الشكل (19) المفاصل اللدنة المتشكلة في الإطار عند الانتقال الهدف

ومن الممكن مشاهدة مخطط القوة – التشوه المثالي لأحد المفاصل اللدنة ومعرفة وضعه وقيمة الدوران وقيمة العزم المسبب لوصول هذا المفصل إلى هذه المرحلة.

الشكل (20) مخطط القوة - التشوه المثالي لأحد المفاصل اللدنة (Ton-cm)

10- إذاً عبر التقييم العام للإطار يمكن القول إن الإطار في مرحلة الإحلال المباشر 10 وكانت جميع الجوائز قد دخلت في مرحلة التلدن ولكن ما زال لديها احتياطي لدن كبير قبل الانهيار. كما نلاحظ الأثر الكبير لعملية تحسين التربة على أداء المنشأ حيث إن الأداء العام للمنشأ قد تغير من مرحلة أمان الحياة إلى مرحلة الإحلال المباشر كما وانخفضت قيمة الانتقال الهدف وبالتالي انخفضت معها القيم التصميمية للقوى المؤثرة على المنشأ تحت تأثير الزلازل.

11- وبالتالي يمكن وعبر التحكم بقساوة التربة المحسنة يمكن الوصول إلى الأداء الأمثل للإطارت تحت الزلازل والعكس صحيح أي يمكن التحكم بعملية تحسين التربة بهدف الحصول على القساوة الأنسب.

الإستنتاجات والتوصيات:

الإستنتاجات:

يمكننا الاستفادة من عملية تحسين الترب بإيجاد تربة ذات مواصفات جديدة تساعد في تحسين قساوة النموذج النابضي المستخدم في نمذجة جملة التأسيس ضمن النموذج الإنشائي وذلك وفقاً لنوع الجملة الإنشائية المختارة لمقاومة الحمولات الجانبية.

2-إن عملية نمذجة جملة التأسيس ضمن النموذج الإنشائي (تربة + أساسات) يجب أن تؤخذ بشكلها الصحيح والمناسب لنوع التربة والجملة الإنشائية المختارة حيث وجد بأن هناك فرقاً كبيراً بين أداء المنشأ في حالة الاستناد الصلب وحالة الاستناد المرن وهذا يدل على أهمية أخذ أثر تفاعل التربة والمنشأ بالحسبان في التحليل والتصميم الانشائي وخاصة في حالة المباني التي يتراوح دورها بين (0.3-0.1) ثانية حيث يكون التفاعل بين التربة والمنشأ أعظمهاً.

3- إن دور المنشأ والانتقال الجانبي يكونان أكبر بحوالي %40 في حالة الاستناد المرن (جملة النوابض) منها من الاستناد الصلب مما يؤدي الى تغيير كبير في القوى والانتقالات والدورانات المطبقة على عناصر المنشأ.

4- يمكن من خلال عملية تحسين التربة المختارة وطبقات التربة الجديدة والمنتقاة وفقاً للقساوة النابضية المرادة لنموذج جملة التأسيس الوصول إلى تغيير أداء المنشأ تحت تأثير الزلازل عبر نقله من مستوى أداء منخفض إلى مستوى أداء أعلى مطلوب التصميم عليه.

5- انخفضت قيمة الانتقال الهدف وبالتالي انخفضت معها القيم التصميمية للقوى المؤثرة على المنشأ تحت تأثير الزلازل.

التوصيات:

1-تم العمل في هذا البحث باستخدام الجمل الإطارية (أربع فتحات) المقاومة للزلازل وذلك للمباني المتوسطة الارتفاع لذلك نرجو توسيع البحث مستقبلاً ليشمل أنواعاً أخرى من الجمل الإنشائية المقاومة للزلازل.

SAP تم إنجاز العمل في هذا البحث باستخدام القيم المستنتجة من البرامج الهندسية المتوافرة مثل برنامج وبرنامج PLAXIS-3d للتربة وهذه القيم هي نظرية لذلك نرجو مستقبلاً التأكد من دقة هذه القيم والنتائج باستخدام القيم الحقلية للترب بعد التحسين.

المراجع:

- 1. FEMAPublication 273.,1997- "NEHRP GUIDELINES FOR THE SEISMIC REHABILTATION OF BUILDING", Prepared for the, BUILDING SEISMIC SAFETY COUNCIL, Washington, D.C, By the, APPLIED TECHNOLOGY COUNCIL California, With funding by FEDERAL EMERGENCY MANAGEMENT AGENCY, Washington.
- 2. FEMA Publication 356., 2000 -"PRESTANDARD AND COMMENTARY FOR THE SEISMIC REHABILITATION OF BUILDING".
- 3. FEMA 440., 2005 -"IMPROVEMENT OF NONLINEAR STATIC SEISMIC ANALYSIS PROCEDURES", Prepared BY, APPLIED TECHNOLOGY COUNCIL, California, Prepared FOR, FEDERAL EMERGENCY MANAGEMENT AGENCY, Washington.
- 4. Hans-Georg K., 2006- "Excavations and Foundations in Soft soils", Germany.
- 5. ATC-40., 1996- "Seismic evaluation and retrofit of concrete building", California seismic safety commission, California.
- 6. BrajaM.Das, 2006. "GEOTICNICAL ENGINEERING", BrajaM.Das, USA.