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O ABSTRACT 0O

In this work, the performance of batch electrocoagulation (EC) treatment using iron
electrodes with monopolar and bipolar electrode configurations for trivalent chromium (Cr
(11)) removal from a synthetic wastewater was investigated. The influences of current
density (from 2 to 25 mA/cm?) and initial metal concentration (from 100 to 250 mg/L) on
the removal efficiency were explored in a batch stirred cell for monopolar and bipolar
configurations.

Removal of Cr (1I1) by EC process from aqueous solution with both monopolar and
bipolar electrode configurations was a feasible process. For the initial Cr (I1)
concentration of 250 mg/L, almost complete removal (99.88%) of Cr (I11) was noted after
20 min of EC in case of bipolar electrode arrangement at 25 mA/cm? with 4.5 mmol/L of
supporting electrolyte (Na,SQO,) against 89.58% of Cr (111) removal for monopole electrode
configuration.

At the same electrolysis time, the power consumption was 47 and 15.3 kWh/m?® in
case of monopolar and bipolar configuration respectively for the previous removal
conditions.

Keywords: electrocoagulation; chromium removal; monopolar and bipolar electrode
configurations; iron electrodes; synthetic wastewater treatment.
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1. Introduction

Chromium can exist under six oxidation states like most transition metals but the
only common ones in industrial effluent are trivalent Cr (I11) and hexavalent Cr (V1) [1].

The use of (Cr (1)) and (Cr (VI)) forms in several industrial processes (leather
tanning, mining of chrome ore, production of steel and alloys, dyes and pigment
manufacturing, glass industry, wood preservation, textile industry, film and photography,
metal cleaning, plating and electroplating, etc.) leads to contamination of the environment
and threaten natural life and public health for their non-degradable and carcinogenic
properties [2].

Exposure to Cr (VI) may cause health problems of epigastria, nausea, vomiting,
severe diarrhea, internal hemorrhage, dermatitis, liver and kidney damage. Long time
contamination with Cr (V1) can result in digestive tract and lung cancers [3,4].

Trivalent Cr (I11) is about 300 times less toxic than Cr (V1) and due to the fact that
has limited hydroxide solubility, it is less mobile. Cr (I11) has effective function for
reducing blood glucose levels, and is often offered to diabetes sufferers. However, long
time exposure to excessive doses of Cr (I11) may also cause some adverse health effects
[5].

Thus environmental regulations usually define limitation values for cromium
concentrations in waters. Based on the environmental regulations, almost all the
wastewater of plants that use chromium during industrial process needs to be treated before
being discharged into the environment [6].

Currently, using trivalent chromium in stead of hexavalent is one of the most
common and efficient processes [7].

This pollutant sparkes concern to societies and regulation authorities around the
world, due to its toxicity [8].

Various techniques employ for recovering or removing Cr from wastewater such as
coagulation [9], adsorption by several types of adsorbents such as activated carbon [10];
lignin [11]; diatomite [12]; natural hydrothermal zeolites [13]; synthetic zeolites [14];
bentonite clay [15], biosolid sorbent from waste-activated sludge [16], biosorption by
aquatic weeds [17], ion-exchange [18] and membrane technologies [19-21].

Most of these methods suffer from some drawbacks such as high capital and
operational costs, large input of chemicals, incomplete removal and their operational
problems.

Among the various techniques mentioned above, Electrocoagulation- EC is found to
be quite interesting both for economical and environmental reasons. EC is successfully
applied to remove soluble ionic species from solutions, particularly heavy metals.

EC has the potential to be the distinct economical and environmental choice for
treatment of industrial wastewater and other related water management issues. It is an
efficient technique since adsorption of hydroxide on mineral surfaces are a 100 times
greater on in situ than on precipitated hydroxides when metal hydroxides are used as
coagulant. EC needs simple equipments, designable for virtually any size. It is cost-
effective, and easily operable. The start-up and operating costs are relatively low. It
requires low maintenance cost with no moving parts. Since practically no chemical
addition is required in this process, it brings minimum chance of secondary pollution. It
needs low current, and it can be run even by green processes, such as, solar, wind-mills and
fuel cells. EC process can effectively destabilize small colloidal particles. It produces
minimal sludge. Gas bubbles produced during electrolysis can enhance flotation. It
removes the smallest colloidal particles efficiently compared to conventional chemical and
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biological techniques, because the smallest charged particles have greater probability of
being coagulated by the electric field that sets them in motion [22]. In addition to these, the
following advantages of EC process can be added: electrochemical-based systems allow
controlled and rapid reactions, smaller systems become viable and, instead of using
chemicals and microorganisms, the systems employ only electrons to facilitate water
treatment.

The advantages of EC have encouraged many studies on the use of this technology
for treatment of several industrial wastewater such as laundry [23]; dairy [24]; biodiesel
[25]; paper [26], oil [27], electroplating [28] and textile dyes [29].

In recent years, there is much interest in using EC for treatment of water and
wastewater containing phosphate [30], fluorine [31], nitrate [32], phenol[33], suspended
particles [34], humic acids [35], sulfide, sulphate and sulfite ions [36], and heavy metals
including Cr [37-40].

The EC process is generally accepted that the EC process involves three successive
stages:formation of coagulants by electrolytic oxidation of the electrode,including metal
anode dissolution and water electrolysis; destabilization of the contaminants, particulate
suspension, and breaking of emulsions; aggregation of the destabilized phases to form
flocs [41].

Many systems and reactors (batch or continuous mode) with monopolar or bipolar
EC connection with Fe or Al electrodes were investigated.

One of the most widely used electrode materials in EC process is iron. When iron
electrodes are used, the generated Fe** ions will immediately undergo further spontaneous
reactions to produce corresponding hydroxides and/or polyhydroxides, and the hydrolysis
products may form many monomeric ions and/or polymeric hydroxy complexes. [42].

The Fe(OH)n(s) formed remains in the aqueous stream as a gelatinous suspension,
which can remove the pollutants from wastewater either by complexation or by
electrostatic attraction, followed by coagulation.

In the presence of dissolved iron, trivalent chromium is coprecipitated with ferric
iron to form the solid solution of [Cr,Fe](OH)3; and Cr(OH)s(s) [43].

Monopolar and bipolar EC connections were used for chromium remove. Both of
them have own advantages and disadvantages. Monopolar electrodes need an external
electrical contact to the power supply and their two faces are active with the same polarity.
The current in parallel connections at monopolar electrodes is divided between all the
electrodes in relation to the resistance of the individual cells. Hence, a lower potential
difference is required in parallel connection when compared with serial connections [41,
44].

Monopolar electrodes in serial connections for each pair of electrodes is internally
connected with each other, because the cell voltages sum up, a higher potential difference
is required for a given current [43] .

There is no electrical connection between inner electrodes for bipolar electrodes in
serial connections. The outer electrodes are only connected to the power supply. Outer
electrodes are monopolar and inner ones are bipolar. The voltage applied between the latter
electrodes by the power supply causes the polarization of the intermediate bipolar
electrodes, which then present different polarities in the opposite faces. This connection
mode has a simple setup and requires less maintenance cost during operation. The costs of
higher voltage/lower current transformer rectifiers are lower for the same total power
output than the lower voltage/higher current required for monopolar electrode
configurations. However, the large terminal voltage between a pair of feeder electrodes
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also causes a proportion of the current to flow in the solution, by passing the bipolar
electrodes [44].

The target of the present study was to compare the treatability of synthetic
wastewater containing Cr (I11) by batch EC using iron monopolar in parallel connection
and bipolar electrodes in serial connection, and to compare the effects of varying
operating parameters such as the applied current density, initial concentration and
supporting electrolyte on Cr (111) removal.

2. Materials and methods

To demonstrate the effect of varying operating parameters, a stock solution of 1 L
containing 1000 mg for Cr (1) was prepared with basic cromiuom sulfat (Merck). A set of
experiments were conducted with three different solutions containing Cr (l1)
concentrations of 100, 150 and 250 mg/L by diluting the stock solution.

The effect of initial metal concentrations with different current densities on the
system performance was investigated. Experiments were made by using a cylindrical glass
cell of 500 mL on a magnetic stirrer (Falc Instruments F60 model, Italy). Six plates of iron
electrodes were installed vertically with a spacer to ensure fixed distance and immersed to
a 4 cm depth with an effective area of 100 cm? each, were used as electrodes in monopolar
mode and bipolar with serial connections mode in the experiments. The inter-electrode
distance was 0.3 cm. The Bench-scale EC reactor with monopolar in parallel connection
and bipolar electrodes in serial connection is shown in Fig. 1 and 2 respectively.

® ©
Figure 1. Bench-scale EC reactor Figure 2. Bench-scale EC reactor
with monopolar electrodes in parallel | with bipolar electrodes in serial
connection. connection.
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The electrode surfaces were rinsed with diluted HNO3; and distilled water and then
dried to eliminate the oxides and passivation layers between the experiments. A DC-power
supply (Statron type 3262, Germany) characterized by the ranges 0-5 A for current and 0—
80 V for voltage was used to apply different current densities i.e. 2, 8, 15 and 25 mA/cm?.
The polarity of the cell was reversed after each experiment to limit the formation of the
passivation layers on the electrodes. To determine the system performance, samples of 5
mL were taken periodically from the reactor at predetermined time intervals (5 or 10 min),
and then filtered using Whatman filter paper (Grade 40) to eliminate sludge formed during
electrolysis. The residual Cr (I11) concentrations were determined by ICP-OES (Varian 720
ES model, Australia). The pH and conductivity of solutions during the EC were measured
by a pH meter (Thermo-Orion 420 A model, USA).

In electrochemical processes which consist of heterogeneous ion transfer reactions,
the conductivity of the solution to be treated is a significant parameter. Solution
conductivity affects the applied current efficiency, voltage, and consumption of electrical
energy in electrolytic systems, because the current passing through the circuit is a function
of the conductivity under a certain applied voltage. More energy is required for
overcoming a high ohmic resistance between the anode and the cathode in bipolar
connection when electrical conductivity of the solution is low. The most common method
used to overcome this problem is to add a small amount of electrolyte, which increases the
electric conductivity of the solution and thus reduces the energy consumption during
electrocoagulation. Conductivity of the solution increases as the supporting electrolyte
concentration increases, so current passing through the circuit increases in potentiostatic
mode. The different pollutants which exist in the real indstrial wastewater serve as
supporting electrolyte.

Series of experiments were carried out at differnet supporting electrolyte
concentrations of 0, 1.5 and 4.5 mmol/L Na;SO., which equal (0, 213 and 639 mg/L) for
EC process with bipolar connection. All the runs were performed at laboratory temperature
and at the stirring speed of 300 rpm.

4. Results and discussions

Various parameters of EC were investigated for both electrode arrangements and the
results are presented in this section.

4.1. Effect of current density

Current density combines the effect of cell current and effective surface area of
electrodes. Current density during EC experiments was varied by changing cell current.
The effect of the current density on removal of Cr (llI) was studied at 2,8,15 and 25
mA/cm?. These experiments were conducted with same initial concentration of 100,150
and 250 mg/L Cr(lll). Figures 3, 4 and 5 show a comparison of current density effect on
EC treatment for both monopolar and bipolar connections.

For the initial Cr (111) concentration of 100 mg/L, the removal efficiency values for
monopolar electrode arrangement were 45.66% and 74.35% at the current densities of 2
and 8 mA/cm?, respectively after 20 min EC treatment. The removal efficiency values for
bipolar electrode arrangement were 60.35, 96.90% at the current densities of 2, 8 mA/cm?
respectively with the supporting electrolyte of 0.0, and 1.5 mmol/L respectively as shown
in Fig. 3.

For the initial Cr (I11) concentration of 150 mg/L, the removal efficiency values for
monopolar electrode arrangement were 70.80 and 77.50 % at the current densities of 8 and
15 mA/cm?, respectively after 20 min EC treatment. The removal efficiency values for
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bipolar electrode arrangement were 96.36 and 99.70 % at the current densities of 8 and 15
mA/cm?, respectively with the supporting electrolyte of 1.5 and 4.5 mmol/L respectively as
shown in Fig. 4.

For the initial Cr (111) concentration of 250 mg/L, the removal efficiency values for
monopolar electrode arrangement were 52.00, 79.60 and 89.58 % at the current densities of
8, 15 and 25 mA/cm?, respectively after 20 min EC treatment. The removal efficiency
values for bipolar electrode arrangement were 95.48, 98.74 and 99.88 % at the current
densities of 8, 15 and 25 mA/cm® respectively with the same supporting electrolyte 4.5
mmol/L as shown in Fig. 5.

The iron hydroxides generation is lowest for monopolar electrode arrangement,
therefore, effective removal of Cr (111) by electrocoagulation is observed at higher current
densities for bipolar electrode arrangement, because of higher dissolution of electrode
material (Faraday’s law), and more generated bubbles.
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Figure 3. Comparison of current density effect on EC treatment for both monopolar and bipolar
connections (C,= 100 mg/L)
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Figure 4. Comparison of current density effect on EC treatment for both monopolar and bipolar
connections (C,= 150 mg/L)
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Figure 5. Comparison of current density effect on EC treatment for both monopolar and bipolar
connections (C,= 250 mg/L)

4.2. Effect of initial concentration

EC treatment for initial concentrations of 100, 150 and 250 mg/L for both electrode
arrangements were tested. Initial concentrations did not influence the removal rates,
whereas higher initial concentrations caused higher removal rates for both monopolar and
bipolar connections . Fig. 6, 7 and 8 show the variations of initial Cr (111) concentrations as
a function of time at different current densities of 8, 15 and 25 mA/cm?. All these graphics
exhibited a logical trend related with time depending on initial concentrations whithout
direct correlations between Cr (II1) concentration and removal rates. For the current
density of 8 mA/cm? the Cr (Ill) residual concentrations for monopolar electrode
arrangement were 25.6 and 43.8 mg/L for the initial Cr (I11) concentrations of 100 and 150
mg/L respectively after 20 min EC treatment. The Cr (ll1l) residual concentrations for
bipolar electrode arrangement were 3.1 and 5.5 mg/L for the initial Cr (I1l) concentrations
of 100 and 150 mg/L respectively with the same supporting electrolyte 1.5 mmol/L as
shown in Fig. 6.
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Figure 6. Comparison of initial concentration on EC treatment for both monopolar and bipolar
connections (i = 8 mA/cm2)

For the current density of 15 mA /cm? the Cr (IIl) residual concentrations for
monopolar electrode arrangement were 33.8 and 51.0 mg/L for the initial Cr (llI)
concentrations of 150 and 250 mg/L respectively after 20 min EC treatment. The Cr (l11)
residual concentrations for bipolar electrode arrangement were 0.4 and 3.15 mg/L for the
initial Cr (111) concentrations of 150 and 250 mg/L respectively with the same supporting
electrolyte 4.5 mmol/L as shown in Fig. 7.
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Figure 7. Comparison of initial concentration on EC treatment for both monopolar and bipolar
connections (i = 15 mA/cm2)

For the current density of 25 mA/cm? the Cr (I11) residual concentrations were 26.0
and 0.3 mg/L for monopolar and bipolar electrode arrangements for the initial Cr (111)
concentrations of 250 mg/L after 20 min EC treatment. The supporting electrolyte of 4.5
mmol/L was used for bipolar connection as shown in Fig. 8.
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Figure 8. Comparison of initial concentration on EC treatment for both monopolar and bipolar
connections (i = 25 mA/cm2)

4.3. Evaluation of energy consumption

Variation of total energy consumption values with time for Cr (I1l) removal as a
function of current density for monopolar and bipolar connection is given in Fig. 9.

For the same energy consumption - 23 kWh/m? the electrolysis time was 10 min to
gain more than 97% removal value for initial Cr (I11) concentration of 250 mg/L at the
current density of 25 mA/cm? with 4.5 mmol/L of supporting electrolyte for bipolar
electrode arrangement, against 30 min to gain less than 91% Cr (IlI) removal value for
monopolar electrode configuration.

Other cost items such as consumed steel electrode, maintenance and solid/liquid
separation costs were not taken into account of energy consumption.
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Figure 9.Variation of total energy consumption values with time for Cr (111) removal for
monopolar and bipolar connection. C,=250 mg/L, (i =25 mA/cm2)
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5. Conclusions

According to all results, EC with iron electrodes is a convenient route for effective
removal of Cr (I11) from a synthetic wastewater by monopolar and bipolar configurations.
Bipolar configuration EC was more effective than monopolar configuration EC for Cr (I11)
removal from a synthetic wastewater. The effects of current density, supporting electrolyte
and initial metal concentration on the removal efficiency were examined in a parallel plate
electrochemical reactor. Other parameters such as pH and effect of other water pollutants
on the Cr (I11) removal efficiency were not taken in this study.
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