Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Vol. (43) No. (6) 2021

Development of a New Technique in ROS for
Mobile Robots Localization in Known-Based 2D Environments

Dr. lyad Hatem”
Mhd Ali Alshikh Khalil**

(Received 11/8/2021. Accepted 14/12/2021)

O ABSTRACT 0O

Adaptive Monte Carlo Localization (amcl) is the only standard package for mobile robots

localization in Robot Operating System (ROS). In this research, a new particle filter based
localization technique named general Monte Carlo Localization (gmcl) was developed by
adding three particle filter algorithms to amcl in order to improve its performance, so the new
versions of ROS could be better invested in systems that depend on the knowledge of the
robot’s pose.
In addition, we compared amcl and gmcl in terms of computational complexity and the
ability of addressing the pose-estimation problem in a differential drive mobile robot
equipped with a LIDAR sensor. The results showed that the new proposed technique
outperformed amcl in the accuracy of estimating the pose when compared to the same
maximal computational workload. gmcl was able to reduce the pose-error in pose tracking
and also able to increase the success rate of robot’s pose detection in the two problems of
global localization and kidnapped-robot.

Keywords: Particle filters, Robot operating system, Pose estimation, Monte Carlo
Localization, amcl, Localization in ROS.

" Associate Professor, Mechatronics Department, Faculty of Mechanical and Electrical Engineering,
Tishreen University, Lattakia, Syria, iyadhatem@tishreen.edu.sy

** postgraduate Student (Master), Mechatronics Department, Faculty of Mechanical and Electrical
Engineering, Tishreen University, Lattakia, Syria.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
119

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

o 4 aial) caligag i) gagail (ROS) wigyg dl Jads allis 8 5aaa A58y, ghat
daglaal) alafy) Al i)
*a:uwagg..s

(2021 / 12 /14 & ,aill 33 2021 / 8 / 11 glay) &)
O gedla[

plad (& ASjanall Gligegyll aumgai aail sl Apnldll dajall g4 (amcl) casiall IS i pagad ()
Guen Glapual) Gladiye o aaiad bauda aiasad 48 poldi o3 ¢ Gl 1 4 L(ROS) cagis)l Juais
5 a8l Cpeail amel) clasead) cilaidiad cilia) lsa U dalas) DA (e (gmcl) aladl HIS Jiga o gai
il pmge dpra o adiat) AedalY) 6 Jomil IS8 e Cugygpl) Qi SUa i Agle) Ul
e Axllae e 8yadlly olaadl a@adll Aap) Cus e gmel 5 amel g 45)lia Cujal @ly) dalayl
G ooV oluad) Jeriill scae s ae A5ad) die psall (peds 48y b amel e saall da i)
sl lSie A Cisg sl pnge GLES) e Jaes Baly)y aadasall o 8 pazaga) thd Ll gmol g Uaiad
ccakiall Cgrg s Jall

isagyll Jaadi alas 8 s gaill

A ¢ DB (0 pets Analy il g Sly ASilial) Aatigh A0S ¢ ey SlSal and (a0 lusa Siad
iyadhatem@tishreen.edu.sy
gy ¢ ABIU ¢y Analy (Al gy Aleal) duuighl A0S colig SlSaal) acd ((iuale) Lie ciluf callls **

Car

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
120

Jia (gla Cisgll Jinds allai 3 3uan Al sl (ROS) daslaall alady) 286 clisd) 3 Aatall clipag)l aaasall

Introduction:

Robot Operating System (ROS), described as a flexible open source framework for writing
robot software, is a collection of tools, libraries, and conventions that aim to simplify the task
of creating complex and robust robot behavior across a wide variety of robotic platforms. It
uses synchronous nodes to carry out processes that represent programs, and messages to
exchange data between nodes [1]. It is already widely used in aerial, ground, manipulator and
marine robotic platforms [2]. ROS is characterized by the increasing presence of software
developers contributing to modeling and to writing software for large number of robots of all
types including surgical, humanoid, space robotics, and autonomous cars [3]. It also achieves
great compatibility with the famous Gazebo simulator [4], where it is possible to model a
virtual work environment, to test and analyze robot algorithms in virtual environment before
applying them to a real robot. Its framework is also integrated with industrial robotics
through ROS Industrial project [5].

Mobile robot localization is the problem of determining the pose position and orientation of
the robot against a known map. it can be seen as a transformation problem between
coordinates and can be described as the process of creating a link between the map global
coordinate system and the robot local coordinate system [6] (Figure (1)). Localization is often
called pose estimation since probabilistic approaches are used to solve it, (in our case through
particle filters [7]). Robot localization is considered as a fundamental perception problem in
robotics and it is a requirement for performing other tasks such as path planning (Figure (2)),
synchronizing movement with the movement of other robots to perform a specific task,
avoiding obstacles and making decisions in certain cases. Therefore, accurate robot
localization makes the effectiveness of these tasks improved and reduces errors and the
possibility of failure.

The package amcl [8], which stands for Adaptive Monte Carlo Localization, is the only
standard package in ROS for estimating the pose of mobile robots within a known 2D
environment. It can be observed from literature that the new localization techniques improve
solving at the most two of the three localization problems: Pose Tracking, Global
Localization and Kidnapped-Robot Problems. Thus, the importance of this research emerges
from developing a new technique to improve solving the three problems together with the
ability to work in real time.

Base Frame /-—\ m /n-u\

Transiation Orientation

-

¥ \

Odom Frame
/

Transistion Orientation

L 4
Map Frame r @

Figure (1) Monte Carlo Localization -mcl- estimating Figure (2) role of
transformation between robot’s base frame and map frame localization in path planning process

This article is divided into seven sections as follows: the first section provides an explanation
of amcl technique, while the second contains comprehensive explanation of the proposed

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
121

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

gmcl technique with the modifications implemented on the selected particle filters. The third
section presents an explanation of parameters added by gmcl to ROS parameter server, and in
the forth section a complexity analysis of the new localization technique gmcl is presented.
The experimental results of the two techniques -gmcl and amcl- with discussion are presented
in fifth and sixth sections, respectively. The last section contains a conclusion to this article
and recommendations.
1. Adaptive Monte Carlo Localization (amcl):
amcl is the standard package for mobile robot localization located in ROS Navigation Stack
[9]. It utilizes augmented_mcl [10] with KLD-sampling particle filter [11]. augmented_mcl is
used because standard-mcl algorithm [10] is unable to solve the kidnapped-robot problem. It
is solved in augmented_mcl through spreading global particles randomly over the map in
order to find the new robot’s pose. The KLD-sampling particle filter is used to adapt the
number of required particles to shape the pose-estimated distribution within acceptable error.
This package has been used in many papers, such as [12, 13, 14, 15, 16, 17, 18, 19]. Table
(1) has the pseudo code for this algorithm, which was derived from the attached code within
the software package.

Table (1) amcl algorithm

1. Algorithm_amcl (X;_q,u;, z;, m):
2:X, =X, = ¢
3. form = 1toM,_,do
4: x™ = sample_motion_model (u, x™
5. w™ =measurement_model (z,, x™,m)
6: X, = X + (™ wm
7: endfor
8. computewgow, Wrast
9: form = 1toM,do
10: with probabilitymax(0.0,1.0 — wrgs/Wgiow) dO
11; drawx ™ frommwith equal probability
12: else
13: drawx ™ fromX,with probability ccw™
14: enddo
15: addx™tox,
16: ifx™falls into an empty binbthen
17: k:=k + 1
18: b := non — empty
3
k-1 2 2
19: M = 2_6{1 “oe-n T \/9(1(—1) 21‘5}
20: endfor
21: returnX,

The algorithm takes map m, control signals u,, sensor readingz.and particle set at previous
timeX,_,as an input and outputs a new set of particles X,. Computing of new pose and weight
of particles are done through motion and measurement model, respectively (lines 3-7). amcl
algorithm uses the standard-mcl approach in computing the new pose and weight of the
particles. In (line 8) we computewg,,and wg,s., Which are short-term and long-term

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
122

Jia (gla Cisgll Jinds allai 3 3uan Al sl (ROS) daslaall alady) 286 clisd) 3 Aatall clipag)l aaasall

averages of the measurement likelihood, respectively. The influence of theses variables can
be seen in (line 10) where they are responsible of adding global particles to recover from
kidnapped-robot problem. The calculation of these variables is shown in table (2),
Whereag,,, , aqscare decay rates for the exponential filters. and they satisfy 0 < ag,, <
QAfast-

Resampling stage of amcl is in (lines 9-20). Particles of the new setX.are sampled either
with a random pose (line 10) or through roulette wheel of weights (line 13). KLD-sampling is
implemented in (lines 16-19). KLD-sampling algorithm defines the number of required
particles through maintaining the error value between true distribution and approximated
distribution on a determinate distance called Kullback-Leibler Distance.

Table (2) computewg; oy, Wrqscalgorithm
1: Algorithm_computewg;sy, Wease (Xe):

2. static wgow, Wrast

3 Wapg = 0

4. form = 1toM,_,do

5: Wavg = Wayg + M:—l Wt[m]
6: endfor

1> Wsiow = Wgiow + aslow(Wavg - Wslow)

8. Wrast = Wrast T Qfgst (Wavg - Wfast)
9: returnwgow, Wrqst

2. General Monte Carlo Localization (gmcl):

The following paragraphs introduce our proposed technique for solving the localization
problem.

2.1 Design Goals:

In the literature, many of particle filters have been developed to improve pose estimation.
Every one of these filters improves at most two of the three localization problems. So we
think that to improve localization for all three problems, two candidate filters at least are
needed. In this article four different types of particle filters were adopted (three of them are
new and one is already included in amcl) with the ability of turning one, two or all of them on
or off when initializing gmcl.

The four candidate filters should solve all three localization problems in real time, where:

. Two candidate filters to improve pose tracking performance with possibility of
increasing global localization success rate.

. One candidate filter to increase the success rate when dealing with global
localization and kidnapped-robot problem.

. One candidate filter to reduce computational load by adapting the number of
particles needed to represent the pose-estimated distribution.

Two candidates were chosen for solving the pose tracking problem. The reason emerges from
the fact that pose tracking is the major problem in localization. In addition, after solving the
two other problems, they transform to the pose tracking problem.

2.2 Candidates Selection Criteria:

In this research, several characteristics were adopted to select the candidate filters:

. Advanced and effective particle filters.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
123

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

. Real-time particle filters.

. The ability to integrate filter algorithm with other filters.

. Possibility of applying filter to the global localization problem.

Taking into account the above characteristics, we selected the following filters:

. Optimal Particle Filter [20] and Intelligent Particle Filter [21] to improve pose
tracking performance with the possibility of increasing global localization success rate.

. Self-Adaptive Particle Filter [22] to increase the success rate when dealing with
global localization and kidnapped-robot problem.

. KLD-sampling Particle Filter to adapt the number of particles needed to represent

the pose-estimated distribution.
We used the structure of amcl algorithm as a basis and then we added the remaining filters:
Optimal, Intelligent, Self-Adaptive particle filters.
2.3 Modification and Integration of Candidate Filters:
Algorithms of Optimal, Intelligent and Self-Adaptive filters required modifications before
integrating their algorithms with amcl. These modifications ensured the improvement of their
computational load, took advantage of some amcl ’s algorithms and accomodated filters for
the localization problem.
2.3.1 Modified Optimal Particle Filter:
It can be seen from the algorithm presented in [20] that it uses rejection sampling method for
concrete computing of particle pose in resampling stage. This method does not have a fixed
run-time and, in the context of Localization, it is computationally expensive because the
measurement model is calculated for each possible new pose of the particle in 4.
_ plax)
4= Pmax(Zt|x¢) (1)

The computational complexity imposed by the rejection sampling method is equal to
O(T, - R - M), where:

T, represents the computation time of the measurement model for the particle in its new
potential pose.

R represents the number of attempts required to solve rejection sampling for one particle.

M represents the total number of particles.

For that reason, we replace rejection sampling method with a fixed-time computationally-
inexpensive method by means of auxiliary particles. Equation (2) represents the pose of
auxiliary particlext[m"']that gives the largest measurement model value which represents the

[m]

new pose of the particle x;,
xgm] = xgm‘j]; y € {1,...,B} A argmax (p (zt|x£m'y])) = {j} 2
y

B is the number of auxiliary particles that each particle possesses.
2.3.2 Modified Intelligent Particle Filter:
The number of effective particles N, ., which gives the index of the particle that contains the
threshold weightWw after arranging the particle weights in descending order, cannot be used
with the localization problem. This is because the nature of the measurement model function
dictates a small variance in particle weights, especially that resampling stage imposes equal
weights on all drawn particles.
To solve this problem, we assume a constant threshold weight which is equal to the particle
weights after the resampling stage:

Wr = Weonse = 1/M 3)
M is the total number of particles.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
124

Jia (gla Cisgll Jinds allai 3 3uan Al sl (ROS) daslaall alady) 286 clisd) 3 Aatall clipag)l aaasall

whatW,.,..represents in the context of grouping stage of particles into small and large weight
sets, is that particles that gained weight through the measurement model. The ones who
gained weight after normalization are considered to be large-weight particles, while particles
that lost weight through the measurement model (after normalization) are considered small-
weight particles.
Setting the threshold weight to a constant value speeds up the execution of the algorithm by
canceling the particle weights sorting process whose computational complexity is equal
too(M?)when using selection sort [23] for example.
After grouping particles into small- and large-weight particle sets, we take only one third of
small-weight particles and apply crossover and mutation model to them. The reason for
choosing one third of the small-weight particles is due to the fact that in many cases this
number is large, especially at the beginning of the operation. Therefore, it imposes a large
computational load. Also, the crossing of some particles to the actual pose of the robot leads
to the transfer of a larger number of particles in the following time steps through resampling.
Crossover model modifies the pose of small-weight particles with the help of large-weight
particles and can be described by Equation (4):
xts = axfy, + (1—a) xiy 4)

a € [0,1]is crossover amount.
x!, is the pose of i*"particle from small-weight particle setX,; .
x!,is the pose of randomly selected particle from large-weight particle setX, .
xL¢ is the new pose after applying crossover model.
Mutation model on the other hand moves the pose of small-weight particle to a new,
unknown pose to search for new results that may be better. This may perform well in solv-
ing global localization and kidnapped-robot problem and is described by Equation (5):

i = 2xty l— Ixés ifr < pM (5)

X¢s if 1 > pM
pM € [0,1]represents mutation probability, whiler € [0,1]is chosen randomly.
xtyrepresents the new pose after applying mutation model.
2.3.3 Modified Self-Adaptive Particle Filter:
Since amcl depends in its structure on augmented_mcl to solve kidnapped-robot problem,
two proposed modifications can be implemented. First is to substitute the
sionmax(0.0,1.0 — wrase/Wsiow) by the expression wi®* < ¢, which determines whether
the robot has been kidnapped or not. This expression infer the suspicion of being kidnapped
when it is greater than zero. The second modification is to cancel the ratio «, which
contributes in defining a fixed number of global particlesN;in relation to the total number of
particles N, .In modified algorithm, the potential number of global particles is equal to that
produced by augmented _mcl algorithm and it satisfies the expression:
N = max(0.0,1.0 — wyasr/Wgiow) X M (6)

Where M is the total number of particles.
We consider this as a modified augmented_mcl where instead of spreading random pose
particles over the free space of the map, the modified algorithm spreads particles on the
Similar Energy Region (SER). As mentioned by authors, SERrepresents a set of energy cells
that their energy is similar to senor reading’s energy and can be calculated through algorithm
mentioned in table (3).

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
125

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

Table (3)SERcalculator algorithm
1: Algorithm_SER_calculator (&, z,):

2:SER = ¢

3: for laser beami = 1tordo
4. a; = 1 — 2;/Zmax

5. endfor

6:e = X1 q

7: normalizee = 7 e
8: for energy map cellk = 1toKdo

9: ifle — ex | < 6then
10: SER = SER + (xy)
11: endfor
12: return SER

Where:

eis sensor reading’s energy.

exis energy stored inkt"energy cell.

& is the threshold value that consider if an energy cell is insideSERor not.

x,is embedded pose inkt"energy cell.

2.3.4 Integration of Candidates:

After applying the modifications on the algorithms, we integrate them with amcl. This is
done by exploiting Optimal and Intelligent particle filters for computing new pose and weight
of particles, whereas Self-Adaptive and KLD-sampling particle filter are used in the
resampling stage. Pseudocode of gmcl algorithm is given in table (4). The algorithm takes
same amcl input parameters with energy mapfas an input and outputs a new set of
cles X, .Implementation of Optimal particle filter to compute new pose and weight of particles
is done in (lines 4-11) with the help of auxiliary particles of numberB .

Optimal particle filter in this context replaces standard-mcl approach used in amcl
algorithm for computing new pose and weight of particles. Intelligent particle filter
implementation can be seen in (lines 12-25), where classifying the particles into small-weight
setX,and large-weight setX,,is represented in (lines 12-18), and crossover and mutation
models are represented in (lines 19-25). Crossover and mutation models represent the im-
plementation of Equation (4) and (5) on one third of small-weight particlesMm} / 3, respec-
tively. Based on the fact that the pose of particle has been changed, a re-computation of
weight is necessary (line 23). We computewy;,,,andwgq.in (line 26) in similar way to amcl.
Resampling stage of gmcl is in (lines 27-39). First the calculation of SERis done, which is
explained in table (3), and the rest of the stage is done in similar manner as in amcl. Not to

forget that gmcl adds global particles with poses drawn fromSER(line 30).
Table (4) gmcl algorithm

1. Algorithm_gmcl (X._1, us, 2., m, E):
2. Xy = Xe = Xey = Xep, = @
3. Wapg = 0
4. form = 1toM,_,do
5: forn = 1toBdo
6: x™m = sample_motion_model (u,, x™
7 p (zt | xgm'”]) — measurement_model (z,, x/™™, m)
8 endfor
journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279

126

Jia (gla Cisgll Jinds allai 3 3uan Al sl (ROS) daslaall alady) 286 clisd) 3 Aatall clipag)l aaasall

9: xgm] = xgm'j]; y € {1,...,B} A argmax (p (zt | xgm’y])) ={j}
y
10 w™ =p (zt | xt[m]) = Y=%p (Zt | xEm’n])/B
11: endfor
12: form = 1toM,_,do
13: if wt[m] < Wepnsethen
14: Xep = Xe + (xgm],wt[m])
15: else
16: Xen = Xy + (xt[m]JWt[m]>
17: X, = X + (™ wmy
18: endfor
19: form = 1toM! / 3do
20: drawx™fromx,,,with equal probability
21: x™ =crossover_model (x™,x™)
22: x™ =mutation_model (x™,x[™)
23: recomputew,™
24: Xe = X, + (xm;Wt[Ln])
25: endfor
26: computewgow, Wrast
27: SER = SER_calculator (&, z;)
28:. form = 1toM,do
29: with probabilitymax(0.0,1.0 — wgas /W0) dO
30: dranEm]fromSERwith equal probability
31: else
32: drawx™fromx,with probability ocw.™
33: endwith
34: addx™tox,
35: ifx™falls into an empty binbthen
36: ki=k+1
37: b := non — empty
3
k-1 2 2
38: M, = ?{1 — ot—1) + 9(k—1)Zl_6}
39: endfor
40: returnX,

3. General Monte Carlo Localization (gmcl) in ROS:

The proposed gmcl adds new parameters to ROS parameter server. These parameters are:

L 4 use_optimal_filter(type: bool, default value: false)

When set to true, gmcl will compute new pose and weight of particles through auxiliary
particles of the Optimal particle filter, otherwise it will compute pose and weight through
standard-mcl approach.

L 4 use_intelligent_filter(type: bool, default value: false)

When set to true, gmcl will crossover and mutate the pose of one third of small- weight
particles through crossover and mutation models.

L 4 use_self_adaptive(type: bool, default value: false)

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
127

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

When set to true, gmcl will spread global particles randomly on SER, otherwise it will spread
global particles randomly over the free space of map.

4 use_kld_sampling(type: bool, default value: true)

When set to true, gmcl will adapt the number of its particles, otherwise it will fix the number
of particles to parameter max_particles.

2 N_aux_particles(type: int, default value: 10)
Defines the number of auxiliary particles. Used in Optimal particle filter.
L 4 crossover_alpha(type: double, default value: 0.5)

Specifies the amount of effect that pose of large-weight particle does to pose of small-weight
particle. Used in crossover model in Intelligent particle filter.

4 mutation_probability(type: double, default value: 0.1)

Specifies the occurrence probability of a mutation to pose of small-weight particle. Used in
mutation model in Intelligent particle filter.

L 4 energy_map_resolution_x(type: double, default value: 0.2 meters)

X-axis resolution of energy map. Used in Self-Adaptive particle filter.

4 energy_map_resolution_y(type: double, default value: 0.2 meters)

Y-axis resolution of energy map. Used in Self-Adaptive particle filter.

4 energy_threshold_value(type: double, default value: 0.05)

Defines the upper limit in energy difference between energy map cells and sensor reading’s
energy to shape SER. Used in Self-Adaptive particle filter.

L 4 publish_ser(type: bool, default value: false)

When set to true, gmcl will displaySERiIn Rviz as a PoseArray.

The following flow chart in Figure (3) describes how the first four parameters affects the
flow of gmcl algorithm:

X
sesssrascrsasssssssaasaskosarssdsnnancsncanane " sePe ST ERetERRs s aYssaesanmasnssnnassmsnnassenenn | ESSNRIRAC AR AARR AR bacdabasdasandannn -
" POSE & WEIGHT i " RESAMPLING PHASE l :
CALCULATION PHASE \
False o, aptimul True ' N False wse sell Tree
Mibyer adapive
Caboulate new pose amd Caleubate new pose and
\ | weight of particks thrvagh weight of particles False o Troe Comgate Sissilar Frorgy
I 1 i s Mdsamplng oy .
st apperach thrauzh ssiliery partiches Reghn (SEX)
'
Resampling with fixed Resampling with adaptive
waiher of partiches snd sarsher of pactiches and
False g inteligrat . True spred glabal particles spread ghobal pacticles Ealse e Troe
filter —1 roadrely ever the map rasdemly :nry the mup [— Vd-camplag —1
Apply crossover and Hesampling with fived Revampling with sdaptive
mintation madels 1 the pose sumber of particks and sarsher of partickes and
of how welzght particles and spread Zhabal partiches spread el particles
recakulate theweight | | | | randonly su NER randanaly en NER
T s - L T S ——— ‘ .. Y
X,

Figure (3) flow chart of gmcl algorithm
From this flow chart, we find that gmcl can run up to 16 different filter types, as shown in
table (5). gmcl contains two other localization techniques and for that it is named General
Monte Carlo Localization.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
128

Jia (gla Cisgll Jinds allai 3 3uan Al sl (ROS) daslaall alady) 286 clisd) 3 Aatall clipag)l aaasall

Table (5) name of localization technigue based on embedded filter types

name O.ptimgl Intglliggnt eIf—Adaptive particle LD—sampIing particle
particle filter particle filter filter filter
augmented-mcl 0 0 0 0
amcl 0 0 0 1
gmcl X X X X

xstands for "Don't care™ state.

Installation instructions, examples, gmcl requirements to run on ROS, gmcl subscribed and
published topics, services and links to package code can be seen in Wiki page of gmcl located
in ros.org site and can be accessed through link .

4. Complexity Analysis:

It is essential when developing a new algorithm to study its computational complexity. We
infer the time complexity as a Big O notation in table (6) for both amcl and gmcl algorithms

given in table (1) and table (4), respectively.
Table (6) computation complexity of amcl & gmcl

Type Big O notation

amcl O(T, - My_y + Ty - My + T,(N¢ - log(M¢—1) + (M — Np))

gmel (TL(B "My + M%/3) + T, Ko + Ty - My + To(Ny - log(M¢—1) + (My — Np)))
Where:

T, Time required to compute measurement model for a particle.

T, Time required to decide if an energy cell is within the Similar Energy Region or not.

T, Time required to decide if the particle is the desired one or not.

T, Time required to determine if the particle falls into an empty pin or not.

K, Number of energy map cells.

M Total number of particles.

M‘'Total number of small-weight particles.

N Number of particles sampled via roulette wheel of weights.

B Number of auxiliary particles.

The following is a description of Big O notation for amcl and gmcl .

® Complexity of amcl:

In new pose and weight computation stage, the computational complexity lies in computing
new weights for all particles, which is done through standard-mcl approach O(T,, - M;_,) .

In resampling stage, the complexity of KLD-sampling lies in re-counting of empty pins after
every newly added particle to the new particle seto(T - M;) .The complexity of augmented-
mcl lies in sampling local and global particles. Local particles are sampled via roulette wheel
of weights and since roulette wheel implies Binary search algorithm, the complexity in
sampling local particles isO(T,(N; - log(M,_;))).On the other hand, global particles are
sampled randomly from free space of the map and have complexity ofO(T, (M, — N,)).

® Complexity of gmcl:

In new pose and weight computation stage, the computational complexity lies in computing
new weights for all particles in similar way to amcl. However, Optimal particle filter uses
auxiliary particles to compute the weight of its particles, thus the computational complexity
becomeso(T, - B - M;_;) .Also Intelligent particle filter adds complexity through re-

* http://wiki.ros.org/gmcl

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
129

http://ros.org/

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

computing the weight of small-weight particles that have taken part in crossover and
mutation models, so the added complexity iso(T;, - M{/3).
In resampling stage, the calculation ofSERin Self-Adaptive filter imposes complexityo(T, -
K,) . The rest of resampling stage is the same as in amcl, but global particles are sampled
randomly fromSERand have complexity ofo(T,(M; — N,)).
5. Experimental Results:
For experiments, the latest ROS 1 LTS version (Noetic Ninjemys) at the time of the research
is used along with the virtual environment of the simulation program Gazebo on the famous
Turtlebot 3 [24]. These experiments are conducted in the Mechatronics Department labs at
the Faculty of Mechanical and Electrical Engineering at Tishreen University. Execution of
software and performance evaluation are done on a computer with an Intel core i7 3rd
generation processor and under the Ubuntu 20.04 operating system.
For fair comparison in performance of both techniques, we try as much as possible to
equalize the maximum CPU usage that each demand while conducting the experiments. This
is achieved by selecting parameters in Big O notation that approximate their algorithm
computation time for both. The biggest factor that really decide computation time in Big O is
timeT, because beam-range-finder algorithm is implemented in both gmcl and amcl to
compute particle weights. After neglecting other factors the approximation becomes:

0Ty Me—y)amar ~ O (To(B - Me_y + M/3)) (7)

gmcl

It could be observed, while operating gmcl at Turtlebot, that the number of small-weight
particles that take part in crossover and mutation models is approximately15%of total number
of particles:

M!/3 =~ 015 M,_, (8)
The Equation (7) becomes:
O(T, - Me—)amer = O(Ty - Me_1(B + 0-15))gmcl = O(T, - M¢—1)amer = O(T, - Me—q -

B)gmcl(g)

To fix as much as possible the maximal computational workload we should fulfill:
Momea = Mgmcl * B (10)

In our experiments, we define Mz3%% = 10000, M7;2% = 2000and B = 5.

In the following paragraphs, we study the performance of gmcl and amcl in solving the three
types of localization problems.

5.1 Pose Tracking:

The study of pose tracking problem implies some knowledge about the initial pose of the
robot. The experiment entails running the robot along the path shown in Figure (4) from point
1 to 8, and studying how well did gmcl and amcl track the robot’s pose. Tracking
performance is evaluated by means of Root Mean Square (RMS) value for both error and
variance of position and orientation for the whole experiment.

It is clear that conducting one experiment is not enough to evaluate the performance of both
techniques, so we repeat the experiment several times and take the mean of the RMS value
for both the error and the variance. The number of necessary repetitions follows the Standard
Error of the Mean (SEM) [25]:

01
g = % (11)
arepresents the standard deviation of RMS value set, where each RMS value results from an
experiment iteration.

nrepresents number of experiment iterations.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
130

e

-
.
-

L | 1 1 1 1 1

1 1

@ (b)

Figure (4) particles at start time when studying pose tracking. Path of experiment is presented by line

connecting the eight points. Red arrow represents the true pose of robot, while blue arrow represents
pose estimated by green particles. (a) represents amcl particles, (b) represents gmcl particles.

25 7
225 6.5
6
W 20 w 55
s 175 g 5
o 15 o 4.5
S — c 4
L2'e S
= 8125 £ 535
V) b S D
€ 10 co 3
c = 2.5
S 75 'e) 2
2 5 § 1.5
2.5 2 0 g
0 0
22500 45
8 20000 40
£ 17500 S 35
m g
- 15000 = < 30
S
2 12500 gS.25
c @
s § 10000 g 220
3 7500 9% 15
a s >
S 5000 S 10
S 2500 5
0 0
(c) (d)

Figure (5) mean RMS of the 30 experiments for both techniques when studying pose tracking problem.
Purple line represents margin of error

For experiment repetitions of 30 times, the margin of error in mean RMS of error and
variance for both position and orientation at a confidence level of90%were:

. Margin of error in mean RMS for position error in percentage+1.03% .

. Margin of error in mean RMS for orientation error in percentage+1.07% .

. Margin of error in mean RMS for particle position variance in percentage+6.39% .
journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279

131

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

. Margin of error in mean RMS for particle orientation variance in
percentage+7.08% .

Although the margin of error in mean RMS for particle position and orientation variance is
relatively large, not much can be done about it due to the large randomness in RMS values,
where a large number of experiment iterations is needed to reduce it.

After conducting the experiment 30 times, the performance of both amcl and gmcl during the
entire study of pose tracking can be seen in Figure (5). The figure expresses the mean RMS
values of error and variance for each of the position and orientation for amcl and gmcl taking
into account the margin of error (colored in purple).

From Figure (5), we could infer the percentage of error and variance that gmcl improves
compared to amcl when used in solving pose tracking problem. Values in Figure (6)
represent relative percentage improvement of error and variance taking into account the
margin of error (colored in purple). These values are calculated by substituting the mean
RMS and variance of error for the position and orientation for both gmcl and amcl in the
following equation:

%RelativeDecrease(Xgmer » Xgme1) = M x 100 (12)
amcl

50%
45%
40%
35%
30%
25%
20%
15%
10%

I
0%

-5% -2.14%

-10%

-15%

-20%
Figure (6) reduction of mean RMS that gmcl achieved relative to mean RMS of amcl

28.94%

[percent]

Improvements of gmcl over amcl

5.2 Global Localization:
In this experiment, the initial pose of the robot at start time is unknown, so particles in amcl
are uniformly distributed over the free cells of the map. On the other hand, in gmcl, the
particles are uniformly distributed on SER. The particle distribution of both amcl and gmcl
can be seen in Figure (7).
It can be seen that some of gmcl particles in Figure (7-b) are outside SER. The reason is that
gmcl, after spreading the particles at start time for global localization study, executes the
algorithm once. During execution, Intelligent particle filter performs crossover and mutation
on one third of small-weight particles trying to move them to the pose of large- weight
particles, so these particles appear as a result.
Performance evaluation function for global localization study can be described by a two-
value function (0 if robot’s pose has not been discovered, 1 if robot’s pose has been
discovered) as follows:

1if x = success

f@) = 0if x = failure (13)

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
132

- - P = B, ~ v
P v . L - I
0 N Y A DR e S S 2 ; .
"y l " e St AR : . X l
F IR e b
¥ i~ &) . e S
il WY SN Py) i L >
TR B (e e
':'»- .S " .. 4 .. :
IV TR B |RAZ
AR B B it S0 i
o X -
Bl b e 2k 1 | -
i % P ._.__ . ——
@ (b)

Figure (7) particles at start time when studying global localization, green pose array represents particles
that compose the set of pose estimates (a) represents amcl particles, (b) represents gmcl particles, orange
pose array represents SER.

We consider that gmcl and amcl have discovered the robot’s pose, if they are able to (before

the robot reaches the path point 3):

. Make the error value of the position and orientation less than50cmand
10deg ,respectively.
. Set particles in the converged state.

After iterating the experiment 30 times, it was found that the margin of error in the
percentage of success rate in discovering robot’s pose was+13.5with a confidence level of
90% .

The large margin of error is due to the nature of performance evaluation function, as two-
value functions impose a large standard deviation, which makes SEM large. When the
experiment is repeated 100 times, the margin of error in the percentage of success rate in
discovering robot’s pose is equal to +7.2. Eventually, to reduce the margin beyond this value
too many iterations are required.

After conducting the experiment 100 times, the performance of both gmcl and amcl in the
study of global localization is shown in Figure (8-a), expressed with the percentage success
rate in discovering robot’s pose taking into account the margin of error (colored in purple).

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
133

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

100% 100%
. 90% w 90%
n (%]
g8 80% S 80%
B = 70% B = 70%
c C c c
S8 60% 28 60%
T 5 S 3
N8 50% N8 50%
=i S
S £ 40% 88 40%
ag as
= 30% o™ 30%
S 20% 5 20%
o ¥
10% 10%
0% 0%
(a) (b)

Figure (8) percentage success rate in discovering robot’s pose for both amcl and gmcl.
(a) for global localization study, (b) for kidnapped-robot problem study

5.3 Kidnapped-Robot Problem:

In this experiment, the robot is operated in similar manner of the pose tracking study.
However, once the robot reaches path point 2 in simulation environment, it is teleported
(Kidnapped) to path point 4 in the simulation environment. Here, gmcl and amcl have two
tasks, the first is to detect that the robot has been kidnapped, and the second is to find the new
pose of the robot.

Performance evaluation function for the study of kidnapped-robot problem is the same as in
global localization (Equation (13)).

After being kidnapped, we consider that amcl and gmcl have discovered the new robot’s pose
if they -before the robot reaches the end of the path, which is point 8- are able to:

. Make the error value of the position and orientation less than50cmand
10deg ,respectively.
. Set particles in the converged state.

Just like in global localization study, we conduct the experiment 100 times, the performance
of both gmcl and amcl in the study of kidnapped-robot problem can be seen in Figure (8-b),
which expresses the percentage success rate in discovering robot’s pose for both techniques
taking into account the margin of error which is equal to+6.7when confidence level90%was
adopted (colored in purple).

Results and Discussion:

After conducting the experiments with both gmcl and amcl to solve the three localization
problems,we present here discussion for the results of these experiments. (A sample of each
experiment for the three problems is posted on YouTube")

1. Pose Tracking Results:

Taking advantage of Optimal and Intelligent particle filter, gmcl was able to reduce position
error by13%and orientation error by 27%. We also observed a decrease in position variance
by29% .

The drop in position variance is due to the fact that both gmcl and amcl may sense, as a result
of changing in sensor reading during experiment, that a sudden change in robot’s pose has
been occurred, i.e. a kidnapping of the robot. Although in fact, the robot has not been

* https://youtu.be/J9ZcCon6k-gv

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
134

Jia (gla Cisgll Jinds allai 3 3uan Al sl (ROS) daslaall alady) 286 clisd) 3 Aatall clipag)l aaasall

kidnapped. As a result of this sensing, global particles are added, which increases the
variance. Here gmcl is superior to amcl as it spread particles on SER due to the use of Self-
Adaptive particle filter rather than over the whole map, which makes the position variance
less than that of amcl.

gmcl can not reduce orientation variance. It rather increases it by 2.6%. This is due to the fact
that even when gmcl spread particles on SER, these particles have a uniform angular
distribution similar to amcl, which cannot be improved currently in gmcl.

2. Global Localization Results:

It is known that in the case of global localization, a large number of particles is required to
increase the chances of successful detection of robot’s pose. As we mentioned earlier that
amcl uses ten thousands particles in the experiments while gmcl uses only two thousands
particles.

Nevertheless, the results shows the superiority of gmcl due to Self-Adaptive particle filter,
which distributes the particles in timet = 0on SER. Intelligent and Optimal particle filters also
have a role in increasing the success rate of robot’s pose detection.

The increase in percentage success rate for both techniques is directly related to the
maximum number of particles that they could possess.

3. Kidnapped-Robot Problem Results:

Both gmcl and amcl use the same modification of standard-mcl (augmented-mcl) to detect if
a robot has been kidnapped. However, the approach of finding the new robot pose is done
differently, in gmcl global particles are spread randomly on SER, while in amcl global
particles are spread randomly over the free space of the map. Here it can be emphasized that
gmcl was able to solve the kidnapped-robot problem with a greater percentage success than
the global localization. Although, it is known that dealing with the kidnapped-robot problem
is more difficult than global localization.

This is because in our global localization experiment, the robot’s pose in timet = Ohas
symmetrical poses in the map with respect to sensor reading. This makes it necessary to form
particle clusters in these poses. Also, since we use a small number of particles, a particle
cluster may not be formed near robot’s pose which leads to failure in global localization.
While in the kidnapped robot problem the robot is teleported to a pose in map that does not
have any symmetrical poses with respect to sensor reading, making it more detectable and
thus a higher percentage success rate. However, in amcl the percentage success rate in
kidnapped-robot problem study was still lower than the percentage success rate in global
localization study.

Conclusions and Recommendations:

The experimental results conclude that:

Adding a selected number of filters to work with amcl for solving the localization problem
produce good results with an acceptable computational complexity that enables it to work in
real time.

Size of the map plays a role in determining the number of particles only when dealing with
global localization and kidnapped-robot problem and does not play role in pose tracking.

In gmcl, attention should be paid to the number of auxiliary particles used in the Optimal
particle filter. Increasing the number of these particles gives better performance in pose
tracking, but it increases computation time linearly O(T,, - B - M;_,) .

Changing the values of the crossover alpha and mutation probability in gmcl does not affect
the computational complexity. It plays an important role in changing the estimated pose by

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
135

Tishreen University Journal. Eng. Sciences Series € 2021 (6) 2asll (43) alaall avigl) aglall . 050 daals dlae

gmcl. Since there is no fixed rule for choosing these values, it must be experimentally
selected for the values that gives the best performance.

References:

[1] Quigley, M. ; Gerkey, B. ; Conley, K. ; Faust, J. ; Foote, T. ; Leibs, J. ; Berger, E. ;
Wheeler, R. ; Andrew, N. ROS: An open-source Robot Operating System. In ICRA
Workshop on Open Source Software, 2009, pp. 1-3.

[2] n.d. List of robots using ROS, 2021, http://robots.ros.org.

[3] Zhang, L. ; Merrifield, R. ; Deguet, A. ; Yang, G. Powering the world’s robots—10
years of ROS. Science Robotics. 2(11), 2017.

[4] Koenig, N. ; Howard, A. Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Japan, 2004, pp. 2149-2154.

[5] Edwards, S. M. ; Lewis, C. L. ROS-Industrial — Applying the Robot Operating
System (ROS) to Industrial Applications. International Conference on Robotics and
Automation/Robot Operating System Developer Conference (ICRA/ROSCon), Minnesota,
May 2012.

[6] Filliat, D ; Meyer, J.-A. Map-based Navigation in Mobile Robots. A Review of
Localization Strategies. In Cognitive Systems Research, 4(4),2003, pp243-282.

[7] Del Moral, P. Non Linear Filtering: Interacting Particle Solution. Markov
Processes and Related Fields. 2 (4), 1996, 555-580.

[8] Gerkey, B. amcl — ros wiki, 2021, http://wiki.ros.org/amcl

[9] Marder-Eppstein, E. navigation —ros wiki, 2021 http://wiki.ros.org/navigation

[10] Thrun, S. ; Burgard, W. ; Fox, D. Probabilistic robotics. Cambridge, MIT Press.
September 2005.

[11] Fox, D. Adapting the Sample Size in Particle Filters Through KLD-Sampling.
International Journal of Robotics Research, 22, 2003.

[12] Zaman, S., ; Slany, W. ; Steinbauer, G. ROS-based Mapping, Localization and
Autonomous Navigation using a Pioneer 3-DX Robot and their Relevant Issues. Electronics,
Communications and Photonics Conference, 2011.

[13] Pajaziti, A. ; Avdullahu, P. SLAM — Map Building and Navigation via ROS.
International Journal of Intelligent Systems and Applications in Engineering, 2014.

[14] Takaya, K. ; Asai, T. ; Kroumov, V. ; Smarandache, F. Simulation Environment for
Mobile Robots Testing Using ROS and Gazebo. 20th International Conference on System
Theory, Control and Computing, 2016.

[15] Singh, D. ; Trivedi, E. ; Sharma, Y. ; Niranjan, V. TurtleBot: Design and Hardware
Component Selection. International Conference on Computing, Power and Communication
Technologies, 2018.

[16] Diddeniya, 1. ; Wanniarachchi, W. K. ; Silva, P. & Ganegoda, N. Efficient Office
Assistant Robot System: Autonomous Navigation and Controlling Based on ROS.
International Journal of Multidisciplinary Studies, 6.(1), 2019.

[17] Stahl, T. ; Wischnewski, A. ; Betz, J. ; Lienkamp, M. ROS-based localization of a
race vehicle at high-speed using LIDAR. In Proceeding of E3S Web of Conferences, 2019.
[18] Talwar, D. ; Jung, S. Particle Filter-based Localization of a Mobile Robot by Using
a Single LIDAR Sensor under SLAM in ROS Environment. 19th International Conference on
Control, Automation and Systems, 2019.

[19] Thale, S. ; Prabhu, M. ; Thakur, P. ; Kadam, P. ROS based SLAM implementation

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
136

Jia (gla Cisgll Jinds allai 3 3uan Al sl (ROS) daslaall alady) 286 clisd) 3 Aatall clipag)l aaasall

for Autonomous navigation using Turtlebot. ITM Web of Conferences, 2020.

[20] Blanco, J. ; Gonzalez, J. ; Fernandez-Madrigal, J. An optimal filtering algorithm for
non-parametric observation models in robot localization. IEEE International Confereence on
Robotics and Automation (ICRA), 2008, pp. 461-466.

[21] Yin, S. ; Zhu, X. Intelligent particle filter and its application on fault detection of
nonlinear system. IEEE Transactions on Industrial Electronics, 2015, pp.3852-3861.

[22] Zhang, L. ; Zapata, R. ; Lepinay, P. Self-Adaptive Monte Carlo for Single-Robot
and Multi-Robot Localization. Proceedings of the IEEE International Conference on
Automation and Logistics, 2009.

[23] Knuth, D. The Art of Computer Programming, Volume 3: Sorting and
Searching.2™ ed., Addison—Wesley Professional, 1998, 800.

[24] n.d. Turtlebot 3 Documentation. 2021, https://github.com/ROBOTIS-
GIT/emanual/tree/

master/docs/en/platform/turtlebot3

[25] Taylor, J. R. An Introduction to Error Analysis.2™?. ed., University Science Books,
1996, 327.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
137

