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  ABSTRACT    
 

  Adaptive Monte Carlo Localization (amcl) is the only standard package for mobile robots 

localization in Robot Operating System (ROS). In this research, a new particle filter based 

localization technique named general Monte Carlo Localization (gmcl) was developed  by 

adding three particle filter algorithms to amcl in order to improve its performance, so the new 

versions of ROS could be better invested in systems that depend on the knowledge of the 

robot’s pose. 
In addition, we compared amcl and gmcl in terms of computational complexity and the 

ability of addressing the pose-estimation problem in a differential drive mobile robot 

equipped with a LiDAR sensor. The results showed that the new proposed technique 

outperformed amcl in the accuracy of estimating the pose when compared to the same 

maximal computational workload. gmcl was able to reduce the pose-error in pose tracking 

and also able to increase the success rate of robot’s pose detection in the two problems of 

global localization and kidnapped-robot. 
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( لتموضع الروبوتات المتحركة في ROSتطوير تقنية جديدة في نظام تشغيل الروبوت )
 المعمومةالبيئات ثنائية الأبعاد 

 *إياد محمد حاتم د.        
 خميل محمد عمي الشيخ

 

 (2202 / 20 /24ل لمنشر في ب  ق   . 0202/  8/  22تاريخ الإيداع )
 

 ممخّص  
 

 

( هو الحزمة القياسية الوحيدة لتحديد تموضع الروبوتات المتحركة في نظام amclإن تموضع مونتي كارلو المتكيّف )
سمّيت  عمى مرشحات الجسيماتجديدة تعتمد تموضع  تطوير تقنية. في هذا البحث ، تم (ROSتشغيل الروبوت )

لتحسين أدائه و  amclلى إ( من خلال إضافة ثلاث خوارزميات لمرشحات الجسيمات gmclتموضع مونتي كارلو العام )ب
 بالتالي إمكانية استثمار نظام تشغيل الروبوت مستقبلًا بشكل أفضل في الأنظمة التي تعتمد عمى معرفة موضع الروبوت.

من حيث درجة التعقيد الحسابي والقدرة عمى معالجة مشكمة   gmclو   amclيت مقارنة بين الى ذلك أجر  بالإضافة
التقنية   . حيث اظهرت النتائج تفوقLiDARتخمين الموضع لروبوت ذو نظام حركة تفاضمي مزود بحساس ليزري 

. حيث الأعظمي الحسابي في دقة تخمين الموضع عند المقارنة مع تثبيت عبء التشغيل amclالمقترحة الجديدة عمى 
لروبوت في مشكمتي التموضع اكتشاف موضع نجاح ا تقميل خطأ الموضع في تتبع الموضع وزيادة معدل gmclاستطاع 

 الشامل والروبوت المختطف.

 
 amclمرشحات الجسيمات، نظام تشغيل الروبوت ، تخمين الموضع ، تموضع مونتي كارلو،   الكممات المفتاحية:

 ظام تشغيل الروبوت.لتموضع في نا
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Introduction: 
Robot Operating System (ROS), described as a flexible open source framework for writing 

robot software, is a collection of tools, libraries, and conventions that aim to simplify the task 

of creating complex and robust robot behavior across a wide variety of robotic platforms. It 

uses synchronous nodes to carry out processes that represent programs, and messages to 

exchange data between nodes [1]. It is already widely used in aerial, ground, manipulator and 

marine robotic platforms [2]. ROS is characterized by the increasing presence of software 

developers contributing to modeling and to writing software for large number of robots of all 

types including surgical, humanoid, space robotics, and autonomous cars [3]. It also achieves 

great compatibility with the famous Gazebo simulator [4], where it is possible to model a 

virtual work environment, to test and  analyze robot algorithms in virtual environment before 

applying them to a real robot. Its framework is also integrated with industrial robotics 

through ROS Industrial project [5]. 
Mobile robot localization is the problem of determining the pose position and orientation of 

the robot against a known map. it can be seen as a transformation problem between 

coordinates and can be described as the process of creating a link between the map global 

coordinate system and the robot local coordinate system [6] (Figure (1)). Localization is often 

called pose estimation since probabilistic approaches are used to solve it, (in our case through 

particle filters [7]). Robot localization is considered as a fundamental perception problem in 

robotics and it is a requirement for performing other tasks such as path planning  (Figure (2)), 

synchronizing movement with the movement of other robots to perform a specific task, 

avoiding obstacles and making decisions in certain cases. Therefore, accurate robot 

localization makes the effectiveness of these tasks improved and reduces errors and the 

possibility of failure. 
The package amcl [8], which stands for Adaptive Monte Carlo Localization, is the only 

standard package in ROS for estimating the pose of mobile robots within a known 2D 

environment. It can be observed from literature that the new localization techniques improve 

solving at the most two of the three localization problems: Pose Tracking, Global 

Localization and Kidnapped-Robot Problems. Thus, the importance of this research emerges 

from developing a new technique to improve solving the three problems together with the 

ability to work in real time. 

      Figure (1)  Monte Carlo Localization -mcl- estimating                            Figure (2) role of                    

 transformation between robot’s base frame and map frame        localization in path planning process  

 

This article is divided into seven sections as follows: the first section provides an explanation 

of amcl technique, while the second contains comprehensive explanation of the proposed 
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gmcl technique with the modifications implemented on the selected particle filters. The third 

section presents an explanation of parameters added by gmcl to ROS parameter server, and in 

the forth section a complexity analysis of the new localization technique gmcl is presented. 

The experimental results of the two techniques -gmcl and amcl- with discussion are presented 

in fifth and sixth sections, respectively. The last section contains a conclusion to this article 

and recommendations. 

1. Adaptive Monte Carlo Localization (amcl): 

amcl is the standard package for mobile robot localization located in ROS Navigation Stack 

[9]. It utilizes augmented_mcl [10] with KLD-sampling particle filter [11]. augmented_mcl is 

used because standard-mcl algorithm [10] is unable to solve the kidnapped-robot problem. It 

is solved in augmented_mcl through spreading global particles randomly over the map in 

order to find the new robot’s pose. The KLD-sampling particle filter is used to adapt the 

number of required particles to shape the pose-estimated distribution within acceptable error. 
This package has been used in many papers, such as [12, 13, 14, 15, 16, 17, 18, 19].    Table 

(1) has the pseudo code for this algorithm, which was derived from the attached code within 

the software package.  
 Table (1) amcl algorithm  

11:    Algorithm_amcl  (            ): 

12:   ¯           

13:    for      to    do 

14:           
, -    sample_motion_model (       

, -
)                      

15:           
, -
   measurement_model (     

, -
  ) 

16:           ¯      ¯       
, -
   

, -
      

17:    endfor            

18:    compute            

19:    for      to  do 

10:           with probability   (                     ) do  

11:                  draw  
, -

from with equal probability                      
12:            else 

13:                  draw  
, -

from  ¯ with probability ∝  
, -

 

14:            enddo      

15:            add  
, -

to   

16:            if  
, -

falls into an empty bin then            

17:                            

18:                              

19:                   
   

  
{  

 

 (   )
 √

 

 (   )
    }

 

 

20:    endfor 

21:    return   

 

The algorithm takes map  , control signals   , sensor reading  and particle set at previous 

time    as an input and outputs a new set of particles   . Computing of new pose and weight 

of particles are done through motion and measurement model, respectively (lines 3-7). amcl 

algorithm uses the standard-mcl approach in computing  the new pose and weight of the 

particles. In (line 8) we compute     and      , which are    short-term and long-term 
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averages of the measurement likelihood, respectively. The influence of theses variables can 

be seen in (line 10) where they are responsible of adding global particles to recover from 

kidnapped-robot problem. The calculation of these variables is shown in table (2), 

Where            are decay rates for the exponential filters. and they satisfy           

     .  

Resampling stage of amcl is in (lines 9-20).  Particles of the new set  are sampled   either 

with a random pose (line 10) or through roulette wheel of weights (line 13). KLD-sampling is 

implemented in (lines 16-19). KLD-sampling algorithm defines the number of required 

particles through maintaining the error value between true distribution and approximated 

distribution on a determinate distance called Kullback-Leibler Distance. 

 
Table (2) compute           algorithm 

11:    Algorithm_compute           (  ¯ ): 

12:    static             

13:          

14:    for      to    do 

15:                       
 

    
   

, -
                 

16:    endfor            

17:                      (          ) 

18:                       (           ) 

  9:    return            

 
2. General Monte Carlo Localization (gmcl): 

The following paragraphs introduce our proposed technique for solving the localization 

problem. 

2.1 Design Goals: 

In the literature, many of particle filters have been developed to improve pose estimation. 

Every one of these filters improves at most two of the three localization problems. So we 

think that to improve localization for all three problems, two candidate filters at least are 

needed. In this article four different types of particle filters were adopted (three of them are 

new and one is already included in amcl) with the ability of turning one, two or all of them on 

or off when initializing gmcl. 

The four candidate filters should solve all three localization problems in real time, where: 

 Two candidate filters to improve pose tracking performance with possibility of 

increasing global localization success rate. 

 One candidate filter to increase the success rate when dealing with global 

localization and kidnapped-robot problem. 

 One candidate filter to reduce computational load by adapting the number of 

particles needed to represent the pose-estimated distribution. 

Two candidates were chosen for solving the pose tracking problem. The reason emerges from 

the fact that pose tracking is the major problem in localization. In addition, after solving the 

two other problems, they transform to the pose tracking problem.  

2.2 Candidates Selection Criteria: 

In this research, several characteristics were adopted to select the candidate filters: 
 Advanced and effective particle filters. 
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 Real-time particle filters. 

 The ability to integrate filter algorithm with other filters. 

 Possibility of applying filter to the global localization problem. 

Taking into account the above characteristics, we selected the following filters: 
 Optimal Particle Filter [20] and Intelligent Particle Filter [21] to improve pose 

tracking performance with the possibility of increasing global localization success rate. 

 Self-Adaptive Particle Filter [22] to increase the success rate when dealing with 

global localization and kidnapped-robot problem. 

 KLD-sampling Particle Filter to adapt the number of particles needed to represent 

the pose-estimated distribution. 

We used the structure of amcl algorithm as a basis and then we added the remaining filters: 

Optimal, Intelligent, Self-Adaptive particle filters. 

2.3 Modification and Integration of Candidate Filters: 

Algorithms of Optimal, Intelligent and Self-Adaptive filters required modifications before 

integrating their algorithms with amcl. These modifications ensured the improvement of their 

computational load, took advantage of some amcl ’s algorithms and accomodated filters for 

the localization problem. 

2.3.1 Modified Optimal Particle Filter: 

It can be seen from the algorithm presented in [20] that it uses rejection sampling method for 

concrete computing of particle pose in resampling stage. This method does not have a fixed 

run-time and, in the context of Localization, it is computationally expensive because the 

measurement model is calculated for each possible new pose of the particle in  . 

                                                              
 .     

, -
/

    (     )
                            (1) 

The computational complexity imposed by the rejection sampling method is equal to 

 (      ), where: 

   represents the computation time of the measurement model for the particle in its new 

potential pose. 

  represents the number of attempts required to solve rejection sampling for one particle. 

  represents the total number of particles. 

For that reason, we replace rejection sampling method with a fixed-time computationally- 

inexpensive method by means of auxiliary particles. Equation (2) represents the pose of 

auxiliary particle  
,   -

that gives the largest measurement model value which represents the 

new pose of the particle   
, -

. 

                 
, -      

,   -
       *       +          

 
( .     

,   -
/)    *   +         (2) 

  is the number of auxiliary particles that each particle possesses. 

2.3.2 Modified Intelligent Particle Filter: 

The number of effective particles     , which gives the index of the particle that contains the 

threshold weight  after arranging the particle weights in descending order, cannot be used 

with the localization problem. This is because the nature of the measurement model function 

dictates a small variance in particle weights, especially that resampling stage imposes equal 

weights on all drawn particles. 
To solve this problem, we assume a constant threshold weight which is equal to the particle 

weights after the resampling stage: 
                                                                       ⁄                              (3) 

  is the total number of particles. 
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what      represents in the context of grouping stage of particles into small and large weight 

sets, is that particles that gained weight through the measurement model. The ones who 

gained weight after normalization are considered to be large-weight particles, while particles 

that lost weight through the measurement model (after normalization) are considered small-

weight particles. 

Setting the threshold weight to a constant value speeds up the execution of the algorithm by 

canceling the particle weights sorting process whose computational complexity is equal 

to (  )when using selection sort [23] for example. 

After grouping particles into small- and large-weight particle sets, we take only one third of 

small-weight particles and apply crossover and mutation model to them. The reason for 

choosing one third of the small-weight particles is due to the fact that in many cases this 

number is large, especially at the beginning of the operation. Therefore, it imposes a large 

computational load. Also, the crossing of some particles to the actual pose of the robot leads 

to the transfer of a larger number of particles in the following time steps through resampling. 

Crossover model modifies the pose of small-weight particles with the help of large-weight 

particles and can be described by Equation (4): 

                                                       
        

    (   )    
                           (4) 

    ,   -is crossover amount.  

   
  is the pose of    particle from small-weight particle set      

   
 is the pose of randomly selected particle from large-weight particle set       

   
  is the new pose after applying crossover model. 

Mutation model on the other hand moves the pose of small-weight particle to a new,       

unknown pose to search for new results that may be better. This may perform well in   solv-

ing global localization and kidnapped-robot problem and is described by Equation (5): 

                                      
    

    
       

            

   
           

              (5) 

     ,   -represents mutation probability, while    ,   -is chosen randomly.  

    
 represents the new pose after applying mutation model. 

2.3.3 Modified Self-Adaptive Particle Filter: 

Since amcl depends in its structure on augmented_mcl to solve kidnapped-robot problem, 

two proposed modifications can be implemented. First is to substitute the 

sion   (                     )  by the expression   
       , which determines whether 

the robot has been kidnapped or not. This expression infer the suspicion of being    kidnapped 

when it is greater than zero. The second modification is to cancel the ratio  , which            

contributes in defining a fixed number of global particles  in relation to the total  number of 

particles     In modified algorithm, the potential number of global particles is equal to that 

produced by augmented_mcl algorithm and it satisfies the expression: 

                                                 (                     )                     (6) 

Where   is the total number of particles. 

We consider this as a modified augmented_mcl where instead of spreading random pose 

particles over the free space of the map, the modified algorithm spreads particles on the 

Similar Energy Region (     ). As mentioned by authors,    represents a set of energy cells 

that their energy is similar to senor reading’s energy and can be calculated through algorithm 

mentioned in table (3). 
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Table (3)   calculator algorithm 

11:    Algorithm_SER_calculator  ( ~   ): 

12:         

13:    for laser beam     to do 

14:                    
     ⁄   

15:    endfor  

16:     ∑   
 
      

17:    normalize    
 

 
   

18:    for energy map cell     to do     

19:             if        ~      then 

10:                                  
11:    endfor 

12:    return     

Where: 

  is sensor reading’s energy. 

  ~ is energy stored in   energy cell. 
  is the threshold value that consider if an energy cell is inside   or not. 
  is embedded pose in   energy cell. 

2.3.4 Integration of Candidates: 

After applying the modifications on the algorithms, we integrate them with amcl. This is 

done by exploiting Optimal and Intelligent particle filters for computing new pose and weight 

of particles, whereas Self-Adaptive and KLD-sampling particle filter are used in the 

resampling stage. Pseudocode of gmcl algorithm is given in table (4). The algorithm takes 

same amcl input parameters with energy map ~as an input and outputs a new set of   

cles     Implementation of Optimal particle filter to compute new pose and weight of particles 

is done in (lines 4-11) with the help of auxiliary particles of number    

Optimal particle filter in this context replaces standard-mcl approach used in amcl           

algorithm for computing new pose and weight of particles. Intelligent particle filter        

implementation can be seen in (lines 12-25), where classifying the particles into small-weight 

set   and large-weight set   is represented in (lines 12-18), and crossover and mutation 

models are represented in (lines 19-25). Crossover and mutation models   represent the im-

plementation of Equation (4) and (5) on one third of small-weight particles  
   ⁄  , respec-

tively. Based on the fact that the pose of particle has been changed, a re-computation of 

weight is necessary (line 23). We compute     and     in (line 26) in similar way to amcl. 

Resampling stage of gmcl is in (lines 27-39). First the calculation of    is done, which is 

explained in table (3), and the rest of the stage is done in similar manner as in amcl. Not to 

forget that gmcl adds global particles with poses drawn from   (line 30).  
Table (4) gmcl algorithm 

11:     Algorithm_gmcl  (              ~): 

12:    ¯                       

13:           

14:     for     to    do 

15:          for     to do 

16:                 
,   -    sample_motion_model (       

, -
) 

17:                .       
,   -/    measurement_model (     

,   -  ) 

18:          endfor 
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19:         
, -      

,   -
       *       +          

 
( .       

,   -
/)    *   + 

10:         
, -
    .       

, -
/    ∑     

   .       
,   -

/  ⁄   

11:     endfor 

12:     for     to    do 

13:          if   
, -
         then 

14:                            
, -
   

, -
  

15:          else 

16:                            
, -
   

, -
  

17:               ¯      ¯       
, -
   

, -
             

18:     endfor 

19:     for      to  
   ⁄  do 

20:           draw   
, -

from   with equal probability 

21:           
, -    crossover_model (   

, -     
, -

)    

22:           
, -    mutation_model  (   

, -     
, -

) 

23:           recompute   
, -

 

24:          ¯      ¯        
, -    

, -    

25:     endfor          

26:     compute            

27:        SER_calculator ( ~   )  
28:     for      to  do 

29:             with probability   (                     ) do 

30:                   draw  
, -

from   with equal probability                         

31:              else  

32:                   draw  
, -

from  ¯ with probability ∝  
, -

 

33:             endwith       

34:             add  
, -

to   

35:             if  
, -

falls into an empty bin then 

36:                             

37:                               

38:                    
   

  
{  

 

 (   )
 √

 

 (   )
    }

 

 

39:     endfor 

40:     return   

3. General Monte Carlo Localization (gmcl) in ROS: 

The proposed gmcl adds new parameters to ROS parameter server. These parameters are: 

                   (type: bool, default value: false) 
When set to true, gmcl will compute new pose and weight of particles through auxiliary 

particles of the Optimal particle filter, otherwise it will compute pose and weight through 

standard-mcl approach. 

                       (type: bool, default value: false) 

When set to true, gmcl will crossover and mutate the pose of one third of small- weight 

particles through crossover and mutation models. 

                  (type: bool, default value: false) 
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When set to true, gmcl will spread global particles randomly on    , otherwise it will spread 

global particles randomly over the free space of map. 

                 (type: bool, default value: true) 

When set to true, gmcl will adapt the number of its particles, otherwise it will fix the number 

of particles to parameter              . 
                (type: int, default value: 10) 

Defines the number of auxiliary particles. Used in Optimal particle filter.  

                (type: double, default value: 0.5) 

Specifies the amount of effect that pose of large-weight particle does to pose of small-weight 

particle. Used in crossover model in Intelligent particle filter.  

                     (type: double, default value: 0.1) 

Specifies the occurrence probability of a mutation to pose of small-weight particle. Used in 

mutation model in Intelligent particle filter.  

                        (type: double, default value: 0.2 meters) 

X-axis resolution of energy map. Used in Self-Adaptive particle filter. 

                        (type: double, default value: 0.2 meters) 

Y-axis resolution of energy map. Used in Self-Adaptive particle filter. 

                       (type: double, default value: 0.05) 

Defines the upper limit in energy difference between energy map cells and sensor reading’s 

energy to shape    . Used in Self-Adaptive particle filter.  

            (type: bool, default value: false) 

When set to true, gmcl will display   in Rviz as a PoseArray. 

The following flow chart in Figure (3) describes how the first four parameters affects the 

flow of gmcl algorithm: 

 Figure (3) flow chart of gmcl algorithm 

From this flow chart, we find that gmcl can run up to 16 different filter types, as shown in 

table (5). gmcl contains two other localization techniques and for that it is named General 

Monte Carlo Localization. 
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Table (5) name of localization technique based on embedded filter types 

name 
Optimal  

particle filter 

Intelligent  

particle filter 

Self-Adaptive particle 

filter 

KLD-sampling particle 

filter 

augmented-mcl 0 0 0 0 

amcl 0 0 0 1 

gmcl             

 stands for "Don't care" state.  
Installation instructions, examples, gmcl requirements to run on ROS, gmcl subscribed and 

published topics, services and links to package code can be seen in Wiki page of gmcl located 

in ros.org site and can be accessed through link
*
. 

4. Complexity Analysis: 

It is essential when developing a new algorithm to study its computational complexity. We 

infer the time complexity as a Big O notation in table (6) for both amcl and gmcl algorithms 

given in table (1) and table (4), respectively.  
Table (6) computation complexity of amcl & gmcl 

 Type  Big O notation 

amcl  (                (      (    )  (     ) ) ) 

gmcl  (  (         
  ⁄ )                (      (    )  (     ) ) ) 

Where: 

   Time required to compute measurement model for a particle. 

   Time required to decide if an energy cell is within the Similar Energy Region or not. 

   Time required to decide if the particle is the desired one or not.  

   Time required to determine if the particle falls into an empty pin or not. 

   Number of energy map cells. 

  Total number of particles. 

  Total number of small-weight particles. 

   Number of particles sampled via roulette wheel of weights. 

   Number of auxiliary particles. 

The following is a description of  Big O  notation for amcl and gmcl . 

 Complexity of amcl:  
In new pose and weight computation stage, the computational complexity lies in computing 

new weights for all particles, which is done through standard-mcl approach  (       )   
In resampling stage, the complexity of KLD-sampling  lies in re-counting of empty pins after 

every newly added particle to the new particle set (     )  The complexity of augmented-

mcl lies in sampling local and global particles. Local particles are sampled via roulette wheel 

of weights and since roulette wheel implies Binary search algorithm, the complexity in 

sampling local particles is (  (      (    ) ) )  On the other hand, global particles are 

sampled randomly from free space of the map and have complexity of (  (     ) )   

 Complexity of gmcl:   
In new pose and weight computation stage, the computational complexity lies in computing 

new weights for all particles in similar way to amcl. However, Optimal particle filter uses 

auxiliary particles to compute the weight of its particles, thus the computational complexity 

becomes (         )  Also Intelligent particle filter adds complexity through re-

                                                           

* http://wiki.ros.org/gmcl 

http://ros.org/
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computing the weight of small-weight particles that have taken part in crossover and 

mutation models, so the added complexity is (     
  ⁄ )   

In resampling stage, the calculation of   in Self-Adaptive filter imposes complexity (   

  )   The rest of resampling stage is the same as in amcl, but global particles are sampled 

randomly from   and have complexity of (  (     ) )    

5. Experimental Results: 
For experiments, the latest ROS 1 LTS version (Noetic Ninjemys) at the time of the research 

is used along with the virtual environment of the simulation program Gazebo on the famous 

Turtlebot 3 [24]. These experiments are conducted in the Mechatronics Department labs at 

the Faculty of Mechanical and Electrical Engineering at Tishreen University. Execution of 

software and performance evaluation are done on a computer with an Intel core i7 3rd 

generation processor and under the Ubuntu 20.04 operating system. 
For fair comparison in performance of both techniques, we try as much as possible to 

equalize the maximum CPU usage that each demand while conducting the experiments. This 

is achieved by selecting parameters in Big O notation that approximate their algorithm 

computation time for both. The biggest factor that really decide computation time in Big O  is 

time   because beam-range-finder algorithm is implemented in both gmcl and amcl to 

compute particle weights. After neglecting other factors the approximation becomes: 

                                            (       )        .  (         
  ⁄ )/

    
               (7) 

It could be observed, while operating gmcl at Turtlebot, that the number of small-weight 

particles that take part in crossover and mutation models is approximately   of total number 

of particles: 

                                                                  
  ⁄                                      (8) 

The Equation (7) becomes: 

 (       )        (       (      ))        
(       )        (        

 )    (9)                                                                                                                                           

To fix as much as possible the maximal computational workload we should fulfill:                                                                                               

                                                                                                            (10)     

In our experiments, we define      
           ,      

           and      . 

In the following paragraphs, we study the performance of gmcl and amcl in solving the three 

types of localization problems. 

5.1 Pose Tracking: 
The study of pose tracking problem implies some knowledge about the initial pose of the 

robot. The experiment entails running the robot along the path shown in Figure (4) from point 

1 to 8, and studying how well did gmcl and amcl track the robot’s pose. Tracking 

performance is evaluated by means of Root Mean Square (RMS) value for both error and 

variance of position and orientation for the whole experiment. 
It is clear that conducting one experiment is not enough to evaluate the performance of both 

techniques, so we repeat the experiment several times and take the mean of the RMS value 

for both the error and the variance. The number of necessary repetitions follows the Standard 

Error of the Mean (SEM) [25]: 
                                                                 ̄    

   

√ 
                              (11) 

 represents the standard deviation of RMS value set, where each RMS value results from an 

experiment iteration. 
 represents number of experiment iterations. 
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                                           (a)                                                                                     (b) 

Figure (4) particles at start time when studying pose tracking. Path of experiment is presented by line 

connecting the eight points. Red arrow represents the true pose of robot, while blue arrow represents 

pose estimated by green particles. (a) represents amcl particles, (b) represents gmcl particles. 

 

                                                 (a)                                                                                        (b) 

                      

                                                    (c)                                                                                   (d)  

Figure (5)  mean RMS of the 30 experiments for both techniques when studying pose tracking problem. 

Purple line represents margin of error 

For experiment repetitions of 30 times, the margin of error in mean RMS of error and 

variance for both position and orientation at a confidence level of   were: 

 Margin of error in mean RMS for position error in percentage         

 Margin of error in mean RMS for orientation error in percentage         
 Margin of error in mean RMS for particle position variance in percentage         

4.12 

5.66 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

5 
5.5 

6 
6.5 

7 

M
ea

n
 O

ri
en

ta
ti

o
n

 R
M

S
E

 

 [
d

eg
] 

gmcl 

amcl 

19.42 
22.33 

0 

2.5 

5 

7.5 

10 

12.5 

15 

17.5 

20 

22.5 

25 

M
ea

n
 P

o
si

ti
o

n
 R

M
S

E
 

 [
cm

] 

gmcl 

amcl 

13538.5
8 

19053.6
5 

0 

2500 

5000 

7500 

10000 

12500 

15000 

17500 

20000 

22500 

M
ea

n
 P

o
si

ti
o

n
  
R

M
S

 V
a

ri
a

n
ce

 

[c
m

^
2

] 

36.42 35.48 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

M
ea

n
 O

ri
en

ta
ti

o
n

 R
M

S
 

V
a

ri
a

n
ce

 [
d

eg
^

2
] 



   Tishreen University Journal. Eng. Sciences Series 0202( 6( العدد )34العموم الهندسية المجمد ) .مجمة جامعة تشرين

 

journal.tishreen.edu.sy                                                     Print ISSN: 2079-3081  , Online ISSN:2663-4279 

132 

 Margin of error in mean RMS for particle orientation variance in 

percentage         
Although the margin of error in mean RMS for particle position and orientation variance is 

relatively large, not much can be done about it due to the large randomness in RMS values, 

where a large number of experiment iterations is needed to reduce it. 
After conducting the experiment 30 times, the performance of both amcl and gmcl during the 

entire study of pose tracking can be seen in Figure (5). The figure expresses the mean RMS 

values of error and variance for each of the position and orientation for amcl and gmcl taking 

into account the margin of error (colored in purple). 

From Figure (5), we could infer the percentage of error and variance that gmcl improves 

compared to amcl when used in solving pose tracking problem. Values in Figure (6) 

represent relative percentage improvement of error and variance taking into account the 

margin of error (colored in purple). These values are calculated by substituting the mean 

RMS and variance of error for the position and orientation for both gmcl and amcl in the 

following equation: 

                                           (            )    
             

     
                      (12) 

Figure (6)  reduction of mean RMS that gmcl achieved relative to mean RMS of amcl 

 

5.2 Global Localization: 
In this experiment, the initial pose of the robot at start time is unknown, so particles in amcl 

are uniformly distributed over the free cells of the map. On the other hand, in gmcl, the 

particles are uniformly distributed on    . The particle distribution of both amcl and gmcl 

can be seen in Figure (7).  

It can be seen that some of gmcl particles in Figure (7-b) are outside    . The reason is that 

gmcl, after spreading the particles at start time for global localization study, executes the 

algorithm once. During execution, Intelligent particle filter performs crossover and mutation 

on one third of small-weight particles trying to move them to the pose of large- weight 

particles, so these particles appear as a result.   

Performance evaluation function for global localization study can be described by a two-

value function (0 if robot’s pose has not been discovered, 1 if robot’s pose has been 

discovered) as follows: 

                                            ( )    
               
              

                       (13) 
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                                          (a)                                                                                      (b) 

Figure (7)  particles at start time when studying global localization, green pose array represents particles 

that compose the set of pose estimates (a) represents amcl particles, (b) represents gmcl particles, orange 

pose array represents    . 

We consider that gmcl and amcl have discovered the robot’s pose, if they are able to (before 

the robot reaches the path point 3): 
 Make the error value of the position and orientation less than    and  

       respectively. 

 Set particles in the converged state. 

After iterating the experiment 30 times, it was found that the margin of error in the 

percentage of success rate in discovering robot’s pose was     with a confidence level of 

    . 
The large margin of error is due to the nature of performance evaluation function, as     two-

value functions impose a large standard deviation, which makes SEM large. When the 

experiment is repeated 100 times, the margin of error in the percentage of success rate in 

discovering robot’s pose is equal to     . Eventually, to reduce the margin beyond this value 

too many iterations are required. 
After conducting the experiment 100 times, the performance of both gmcl and amcl in the 

study of global localization is shown in Figure (8-a), expressed with the percentage success 

rate in discovering robot’s pose taking into account the margin of error (colored in purple). 
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                                                      (a)                                                                                      (b)                                                                                             

Figure (8) percentage success rate in discovering robot’s pose for both amcl and gmcl. 

(a) for global localization study, (b) for kidnapped-robot problem study  

5.3 Kidnapped-Robot Problem: 
In this experiment, the robot is operated in similar manner of the pose tracking study. 

However, once the robot reaches path point 2 in simulation environment, it is teleported 

(Kidnapped) to path point 4 in the simulation environment. Here, gmcl and amcl have two 

tasks, the first is to detect that the robot has been kidnapped, and the second is to find the new 

pose of the robot. 
Performance evaluation function for the study of kidnapped-robot problem is the same as in 

global localization (Equation (13)). 
After being kidnapped, we consider that amcl and gmcl have discovered the new robot’s pose 

if they -before the robot reaches the end of the path, which is point 8- are able to: 

 Make the error value of the position and orientation less than    and  

       respectively. 

 Set particles in the converged state. 

Just like in global localization study, we conduct the experiment 100 times, the performance 

of both gmcl and amcl in the study of kidnapped-robot problem can be seen in Figure (8-b), 

which expresses the percentage success rate in discovering robot’s pose for both techniques 

taking into account the margin of error which is equal to    when confidence level   was 

adopted (colored in purple). 

 

Results and  Discussion: 

After conducting the experiments with both gmcl and amcl to solve the three localization 

problems,we present here discussion for the results of these experiments. (A sample of each 

experiment for the three problems is posted on YouTube
*
) 

1. Pose Tracking Results: 

Taking advantage of Optimal and Intelligent particle filter, gmcl was able to reduce position 

error by   and orientation error by    . We also observed a decrease in  position variance 

by      
The drop in position variance is due to the fact that both gmcl and amcl may sense, as a result 

of changing in sensor reading during experiment, that a sudden change in robot’s pose has 

been occurred, i.e. a kidnapping of the robot. Although in fact, the robot has not been 

                                                           

* https://youtu.be/J9ZcCon6k-gv 

74.00% 

28.00% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 
G

lo
b

a
l 

L
o

ca
li

za
ti

o
n

 S
u

cc
es

s 

 R
a

te
 [

p
er

c
en

t]
 

83.00% 

21.00% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

K
id

n
a

p
 L

o
ca

li
za

ti
o

n
 S

u
cc

es
s 

R
a

te
  
[p

er
c
en

t]
 



حاتم، خميل             تطوير تقنية جديدة في نظام تشغيل الروبوت  (ROS) لتموضع الروبوتات المتحركة في البيئات ثنائية الأبعاد المعمومة 

 

journal.tishreen.edu.sy                                                     Print ISSN: 2079-3081  , Online ISSN:2663-4279 

135 

kidnapped. As a result of this sensing, global particles are added, which increases the 

variance. Here gmcl is superior to amcl as it spread particles on     due to the use of Self-

Adaptive particle filter rather than over the whole map, which makes the position variance 

less than that of amcl.  

gmcl can not reduce orientation variance. It rather increases it by     .  This is due to the fact 

that even when gmcl spread particles on    , these particles have  a uniform angular 

distribution similar to amcl, which cannot be improved currently in gmcl. 

2. Global Localization Results: 

It is known that in the case of global localization, a large number of particles is required to 

increase the chances of successful detection of robot’s pose. As we mentioned earlier that 

amcl uses ten thousands particles in the experiments while gmcl uses only two thousands 

particles. 

Nevertheless, the results shows the superiority of gmcl due to Self-Adaptive particle filter, 

which distributes the particles in time   on    . Intelligent and Optimal particle filters also 

have a role in increasing the success rate of robot’s pose detection. 
The increase in percentage success rate for both techniques is directly related to the 

maximum number of particles that they could possess. 

3. Kidnapped-Robot Problem Results: 

Both gmcl and amcl use the same modification of standard-mcl (augmented-mcl ) to detect if 

a robot has been kidnapped. However, the approach of finding the new robot pose is done 

differently, in gmcl global particles are spread randomly on    ,  while in amcl global 

particles are spread randomly over the free space of the map. Here it can be emphasized that 

gmcl was able to solve the kidnapped-robot problem with a greater percentage success than 

the global localization. Although, it is known that dealing with the kidnapped-robot problem 

is more difficult than global localization. 

This is because in our global localization experiment, the robot’s pose in time   has 

symmetrical poses in the map with respect to sensor reading. This makes it necessary to form 

particle clusters in these poses. Also, since we use a small number of particles, a particle 

cluster may not be formed near robot’s pose which leads to failure in global localization. 

While in the kidnapped robot problem the robot is teleported to a pose in map that does not 

have any symmetrical poses with respect to sensor reading, making it more detectable and 

thus a higher percentage success rate. However, in amcl the percentage success rate in  

kidnapped-robot problem study was still lower than the percentage success rate in global 

localization study. 
 

Conclusions and Recommendations: 
The experimental results conclude that: 
Adding a selected number of filters to work with amcl for solving the localization problem 

produce good results with an acceptable computational complexity that enables it to work in 

real time.  

Size of the map plays a role in determining the number of particles only when dealing with  

global localization and kidnapped-robot problem and does not play role in pose tracking.  

In gmcl, attention should be paid to the number of auxiliary particles used in the Optimal 

particle filter. Increasing the number of these particles gives better performance in pose 

tracking, but it increases computation time linearly  (         )   
Changing the values of the crossover alpha and mutation probability in gmcl does not affect 

the computational complexity. It plays an important role in changing the estimated pose by 
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gmcl. Since there is no fixed rule for choosing these values, it must be experimentally 

selected for the values that gives the best performance. 
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