Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Vol. (47) No. (1) 2025

Improved A* Algorithms For DDMR With Static And Dynamic
Constraints With Comparison Study Of DWA, Dijkstra, RRT, And
Traditional A*

Basem Fares
Emad Alrouh **
Ahmed Haj Darwish ***
Shaza Otri ****
(Received 17 /11/2024. Accepted 16/ 1/2025)

O ABSTRACT 0O

This paper presents a path planning method based on the traditional A* algorithm for a
two-wheeled Non-Holonomic Differential Drive Mobile Robot (DDMR). The proposed
method supports autonomous navigation and obstacle avoidance and also diminishes the
drawbacks of A* algorithm, such as large turning angles in the robot's path, unsmooth
trajectories, and applicability only to static environments. This method adopts A*
algorithm and a weighted heuristic function incorporating curvature. The weighted
heuristic function decreases the path length, while the curvature function smooths the path.
Three different scenarios (maps) is simulated to evaluate the proposed method. Robot
Operating System (ROS), Gazebo and RViz is used to simulate three different scenarios
with consistent navigation parameters for the mentioned methods. The results obtained
were compared with those of DWA, Dijkstra, RRT, and A* algorithm. The comparison
proved the superiority of the proposed method, in removing redundant tipping points to
smooth the planned path and shortening its length 60%. The effect of weights and
curvature angles on the distance function, as well as the effects of local and global cost
map parameters on the proposed method is studied and clarified.

Keywords: Path Planning, Avoiding Obstacles, Navigation Stack, Ros, Rviz, Gazebo, DDMR.

Copyright -Tishreen University journal-Syria, The authors retain the
copyright under a CC BY-NC-SA 04

*

Dept. Control Engineering and Automation - Faculty of Electrical and Electronic Engineering -
University of Aleppo - Aleppo - Syria.

** Dept. Mechatronic Engineering- Faculty of Electrical and Electronic Engineering - University of
Aleppo - Aleppo - Syria.

*** Dept. Artificial Intelligence and Natural Languages- Faculty of Informatics Engineering -
University of Aleppo - Aleppo - Syria.

****Postgraduate Student (Ph.D.), Dept. Control Engineering and Automation - Faculty of Electrical
and Electronic Engineering - University of Aleppo- Aleppo- Syria. shaza.otri@tishreen.edu

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
39

mailto:shaza.otri@tishreen.edu

Tishreen University Journal. Eng. Sciences Series @ 2025 (1) 2asll (47) alaall davxigl) aglall . 0050 daala dlae

A pen ASpalinng Al 358 aa DDMR g) daa *A dga) 53
4,083 *A g RRT 9 Dijkstras DWA g 4l
"ol auly
*rrgsl dle
*EE ngya gla daal
(2025 / 1 /16 & ,aill 43 2024 / 11 / 17 g1ay) fb)

O uedla

B Cigrs) o Lehabais aldill *A daa))l o adiad jluall Jashadil Bana dangle dfiagl) 48)5l) o35 020
e oo LS ¢ (3lsall i e Aliisall Al ds il Lngid) pexi DDMR g5 00 ilae 53 Loalss
o) e Shlaally cigrg)l Jlan (b 5Sll Glhail) Uy Jie cpalill *A Rua) s sl 4n
ANV Als dgms *A L)yl Gread o da gl Amgiall adad LAGEN il 8 Las el AL,
Jea o clad) Ay Jaad e o Gluall Jsha &) sall 4yl dllall JI Cum coling) Ally dnede daaya
sl Al eyl Jana ae Taihal) ddbiae cilagyylise ZD5 YA (e 3lSLa) i LAl ST Ll
S G o ROS (noetic)dpinll alas iy 8 cdajiall diphll apil .l il dajiddl dal,
Lealyy i Al il sl Aduia Ji5 Cilalas ae ddlida e gyyline AU 3Ssal RViZ y Gazebo aladiul
Apaall *A &l ylsas RRT 5 Dijkstra s DWA e Ga i) dga) sl o 43ylie ¢ haY

Jsh Qs sl Jsatll Bl Al DS (e losall mai (& Cinad Aailall $ay bl (356 Anlaal i
Loy d il eyl K ddald) s e eliasy) gy ohe¥) il du)s e LS %60 sy bl
Gagidl dagiadl e dadlally dddal) kil

.Ros, Rviz, Gazebo, DDMR. ¢idaja <l iah)l ¢ (33lsal)l caiad ¢ jlusal) Jaslads sdialidal) culalsl)

oadll ge8a
CC BY-NC-SA 04

oyl Gaser plill Gy Oilsall hding dgyse —ppl Axsela dsa d

g g —calam Gala daala— Ay S Al gl Aaigd) 4308 — AiaiYly asadl) Ausia acd

vy s —ala cala dsala— dpig Y1 Al gl Autigh A8 — (g el dsdin pudd ¥ ¥

gy g — e s daala—Ailagleal) Auaigh) Ads— Al Glillly aial) £ S acd ***
shaza.otri@tishreen.edu. 4y sm —cula—cula Aaala— 4y ASY)g il gl Auaigl 08 — A0y aladl) dasih aud—o)) iy Adla* * % *

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
40

mailto:shaza.otri@tishreen.edu

@b s gl puld ASalins A8l 358 aa DDMR syl dnae *A aa)l55

Introduction:

The rapid development of embedded intelligent systems and sensory technologies has
speeded up developments of autonomous mobile robots, improving their productivity and
efficiency in their various types, such as Humanoid, Industrial, Social, Medical, Service,
Rescue, and Agricultural robots [1]. The autonomy of these robots depend on motion
planning algorithms that facilitate safe navigation to their targets.

Motion planning consists of two stages: the first one called path planning, which focuses
on processing time, path length, and path smoothness; while the second stage is trajectory
planning, that generates the kinetic commands for robot navigation [2].

Path planning algorithms are also classified of two main planners: global planners, which
require complete knowledge of the environment to establish a collision-free path based on
a static map, and local planners, which handle updated dynamic obstacles in real time.
Moreover, path planning techniques have three primary groups: traditional methods
(including graph-based, sampling-based, gradient-based, optimization-based, and
interpolation curve algorithms), machine learning and deep learning approaches, and meta-
heuristic optimization techniques [3].

Traditional path planning methods are mostly used due to their simplicity, low
computational cost, and their online real time abilities. Dijkstra [4] [5] is one of those
common and well-known planers. Dijkstra is considered a Graph Search and an
Uninformed Search algorithm, it is also a kind of blind search, which is used with discrete
maps like Occupancy Grid Map (OGM) [6]. Where it always finds the shortest feasible
path. Dijkstra has been modified to make it faster, through A* algorithm. A* is a Graph
Search and an Informed Search algorithm. A* also is a typical heuristic and deterministic
algorithm based on the heuristic method of finding an optimal path solution [4] [7] [8] [9].
DWA (Dynamic-Window Approach) algorithm is another method that uses robot
dynamics to plan the path in the shortest time, where admissible velocities are used. This
algorithm is used in local planning [7] [9].

The RRT (Rapidly exploring Random Tree) algorithm is used as a competitor to the A*
algorithm for high dimensional spaces. RRT is considered a kind of Monte-Carlo simulator
with bias search to build a path tree [5] [10]. This makes the RRT algorithm more complex
and difficult to implement.

This paper will focus on adopting A* algorithm characteristics to build a path planning
method adaptable to static and dynamic environments.

The rest of the paper is organized as follows: section 2 discusses the A* algorithm and its
heuristic functions thoroughly, section 3 illustrates the dynamic model of the simulated
robot, section 4 shows simulation tools and the maps used, section 5 shows the results and
section 6 concludes the paper.

2. A* algorithm:

A* algorithm is a Graph Search Based, and an Informed Search algorithm. A* is a typical
heuristic and deterministic algorithm based on the heuristic method of finding an optimal
path solution.

There are issues associated with the A* algorithm that limit its use. The system path
planning has an excessive number of inflection points and turns, which makes it difficult
for the robot to move in its actual surroundings [4]. A* algorithm is considered a complete,
optimal path planning algorithm. It is heuristic deterministic and not scalable well as map
size increases. The total cost f(x) is defined as the total real traveled distance g(x) and the
heuristic value h(x), as in equation (1).

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
41

Tishreen University Journal. Eng. Sciences Series @ 2025 (1) 2asll (47) alaall davxigl) aglall . 0050 daala dlae

f(x) = g(x) + h(x) 1)

By using acceptable admissible heuristic guidance h(x). A* is both effective and optimal [4].

2.1 A* algorithm heuristic functions:

The heuristic function estimates the distance from the current node to the target node.

a. Euclidean distance:

The distance is the name of the imaginary straight line between the starting and target
points, regardless of the obstacles. The Euclidean distance is given by equation (2) [8].

d=(x; —x)% + (y1 — ¥2)? (2)
b. Manhattan Distance:
The Manhattan distance between two points is measured along two axes at right angles. It
calculated distance to allow movement (left or right) and (up or down) only. We find that
the path includes horizontal or vertical blocks, and the angle between these two blocks is
equal to 90 degrees. Given in equation (3). [8]
d=|x;— x| +|y1 — ¥l 3)
c. Octile distance
This function is part of the hierarchical clustering method. The Octile distance calculates
the value from x to y. where X,y are a numeric vector or a matrix. The Octile heuristic is
used when pathfinding on an 8-connected grid that can be written [11].
d. Quadratic Distance
This function also called Euclidean distance squared, this method recommended to avoid
the expensive square root in the Euclidean distance by using distance-squared that given by
equation (4) [11].
d=((x; —x)* + (y1 — ¥2)»)? 4)

e. Diagonal distance
Diagonal distance can be used if the map allows diagonal movement, where you can move
(4 northeast). The Manhattan distance for (4 east, 4 north) will be 8XD. However, diognal
move (4 northeast) instead, so the heuristic should be 4XD2, where D2 is the cost of
moving diagonally. The Diagonal distance is given by equation (5) [11].

d = max(|x; — x|y, — ¥21) 5)
2.2 Curvature

In many path-planning algorithms like A*, the raw path generated consists of straight-line
segments connecting waypoints the Euclidean distance, as shown in equation (6).

d = (xcurrent - xlast_waypoint)z + (ycurrent - ylast_waypoint)z (6)

This can lead to sharp turns which make the path slower and less efficient. The function
applied is a method for achieving path planning with a smooth trajectory closes to the
original path, avoiding abrupt changes in direction. If the angle between segments is small
(indicating a straight path), intermediate waypoints can be removed. However, if the angle
is large (indicating a sharp turn) the path will be smoothed, and more waypoints should be
retained. [12]

The angle is calculated as shown in equation (7).

0= arCtan(Ynext - ycurrent) /(xnext - xcurrent) (7)
3. The kinematic model

The linear velocity and angular velocity are sampled to simulate the robot path that
planned with global and local planners with avoiding obstacles behavior in real time [13].
The kinematic model of the DDMR as shown in Figure (4). The linear velocity of DDMR

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
42

ke i sl onld A Saalizsy 4S5 358 (yann DDMR agas) dinena *A H3a3 s

in the robot coordinates represents the average of linear velocities of the right and left

wheels is calculated by
VR + Vi,

vE—y (8)

The angular velocity of DDMR, where the 2L is the distance between two wheels is
calculated by.
VR — VL,

2L

€)

W =

Figure (1) Dynamic model of a mobile robot

An alternative form [13] of the forward kinematic model of DDMR based on linear
velocities and angular velocities represented in the robot coordinates is:

cos(8) O

1 = [sm(e) 0
The last equation is called the DDMR Navigation Equation.
4. The proposed methodology:
A study of A* algorithm heuristic functions such as Euclidean, Manhattan, Octile, Diagonal
and Quadratic is made to compare path length, time travel, and iteration for all methods.
The A* algorithm is improved by applying a weighted heuristic function after calibration
of weights to reach the optimal weight that generate the shortest path. Then the track is
smoothed with curvature method to solve the problem of many turning points, large
turning angles that are the traditional A* disadvantages.
The proposed algorithm Data flow diagram
A graphical representation for the proposed A* is generated by using the rqt_graph

command to visualize the communication between different active nodes in a ROS system,
showing how nodes (processes) are interconnected by topics.

/:p server —
fjoint_ “ates/_\ ’\

M a0

.move _baseigoal

(fJoint_state_publisher ——>{/robot_state_puplisher W2
M statlc Imove_base/SrvCllentPlugin/pian
> (_Imove_base) > Jrobot_crossing)
({odom_wrt @ “ ___/(Imove_baselgoal NGrz oy,

) /f'\ [| . '
'Ija-star_solution'}m;veb:@: fomd_vel
,/

—_

Figure (2): The data flow of the active nodes connection for the proposed A*

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
43

Tishreen University Journal. Eng. Sciences Series @ 2025 (1) 2asll (47) alaall davxigl) aglall . 0050 daala dlae

The proposed algorithm Pseudocode:

1. Start
2. Create open_list
3. Set closed_list to empty
4. Initialize g_cost = 0 for the start node
5. Determine h_cost = weighted_heuristic_distance from start to goal
6. Set the start node f_cost = h_cost
7. Add start_node to open list
8. Set shortest path = [], path_found = False
9. while (open_list is not empty)
o sort open_list according to the lowest f_cost
o extract the first lowest f_cost element to current_node
o close current_node to prevent from visiting again by adding to closed_list
o if current_node is the goal then
. path_found = True
. breack
o get neighbors of current_node
o Loop neighbors
o if the neighbor is visited then continue
o calculate g_cost of a neighbor
o let h_cost = weighted heuristic distance of current neighbor

f _cost =g_cost +w * h_cost
o if the neighbor is in open_list

if f_cost for neighbor is bigger than f_cost then update the node’s f_cost inside

the open_list

else
add neighbor to open_list
o if path_found

. append the goal to the closed_list

. reconstruct the path backward from the target
. Generate the optimal smooth path

7. End

Transformation Tree for robot system

A graphical representation of the robot coordinate frames (such as the robot's base, sensors,
and other components) connections, that visualize the linear graph of all ROS nodes links
when started, by using the tf_tree, it’s ROS command tools, as shown in Figure (3).

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
44

@he s ool onlh ASualind; Aol 358 Gans DDMR pes) e *A e s

view_frames Result
Recorded st time: 1106.423

C__map O
(_odom >
}

(_'_'ft;bot_!ootprl;{:)

" 7 — -
____v'/____ I S IR S
_camera > <_hokuyo > Cleft_wheel > «((I‘g‘ht_whgg_l_‘,

Figure (3): Transformation Tree for robot system showing all the sensors.

The control units of the software system produce appropriate velocity commands and
recovery behavior when needed, this node helps the robot to escape dynamic obstacles by
making a 360-degree rotation to perform obstacle avoidance. If the obstacles continue
along the track even after rotation, the robot stops with error message [14] [15].

5. Simulation:

The experimental environment is Ubuntu 20.04 operating system, and the
experimental platform is ROS (Noetic). A simulation environment with varying levels of
complexity is created using the GAZEBO 3D simulation tool, as shown in Figure (4-b).
This tool accurately models the dynamic characteristics of the robot and visualizes sensor
data using RViz 2D tool. The map constructed with the Rviz simulator is depicted in
Figure (4-a). Three different scenarios are simulated to evaluate the proposed method: (1)
robot navigation within a room, (2) the robot movement passing through critical regions
through a doorway, and (3) the navigation in environment with dynamic obstacles.

Figure (4-a): Map model of the Figure (4-b): The Environment
proposed environment in the Rviz model in Gazebo simulator

A major benefit of mobile autonomous robots is the unique ability to move
independently from the starting point to goal, through a dynamic constraint environment,
without any collision. The navigation stack is used to move DDMR autonomously using
SLAM (Simultaneous Localization And Mapping).

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
45

Tishreen University Journal. Eng. Sciences Series @ 2025 (1) 2asll (47) alaall davxigl) aglall . 0050 daala dlae

Results and Discussion:

6. Result Analysis:

Several experiments were conducted to analyze the performance of different Global
Planner algorithms, with the same simulation environment, and the same robot parameters.
Where the Translation velocity is 0.5 m/sec and the angular velocity is 0.5 rad/sec.

The study is done in three scenarios. The first scenario, the path planning algorithms is
implemented on the DDMR robot in an internal static simulation environment with
obstacles fixed on the map when the map is built. The start position of the robot and the
goal position is inside the construction (indoor). As shown in figure (5).

[I

(8
Figure (5): The first scenario in static environment
Path planning algorithms (DWA, Dijkstra, RRT, A* and the improved A*) are
implemented, where C++ and Python codes are written to calculate the distance travelled
between the initial and the goal, the time (Sec) and the number of iterations to reach the
goal. The results shown in Table (1).

Table (1): Time, Iteration and path traveled in an static environment

scenario 1 - Initial position and goal indoor
Algorithm Time iteration | Path length
DWA 1.69 106 3.87
Dijkstra 1.74 107 3.82
RRT 1.50 118 8.6
A* 1.68 108 3.81
improved A* 1.48 117 1.62

Initial pos and goal indoor

improved A*
A*

RRT

Dijkstra

DWA

Bathléngth2 m iterations ° mTime 8 ? 10

Figure (6): The path planning algorithms in static environment

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
46

@he s ool onlh ASualind; Aol 358 Gans DDMR pes) e *A e s

The second scenario is implementing the path planning algorithms for an environment with
static obstacles. The start position of the robot is inside the room while the goal is outside
the room, passing through the door (critical area). As shown in figure (7).

|]

=

1
Figure (7): The second scenario (static environment), passing critical area

The results are shown in Table (2), the RRT algorithm was unable to perform properly, due
to a critical area between the robot and the goal. Such areas lead to poor performance of
algorithms that rely on artificial intelligence.

scenario 2 - Critical path
Algorithm Time | iteration | Path length
DWA 1.49 099 3.20
Dijkstra 1.33 086 2.67
RRT 1.88 132 5.03
A* 1.86 122 4.14
improved A* 1.73 116 1.55
Table (2): Time, Iteration and path in an outdoor static environment
Critical path
improved A*
AT
RRT e
Dijkstra |
DWA e
0 6

1 2) L4
Pathlength M Iterations ™M Time

Figure (8): The path planning algorithms in critical path

Examples of critical areas include:

* Non-circular obstacles.

* Very large obstacles.

* Obstacles with L shape.

* Obstacles close to each other, which prevent the robot passing through them.

The third scenario, the path planning algorithms are implemented for DDMR robot with
dynamic obstacles environment, detecting with sensors during movement in real time. The
impact of dynamic obstacle is shown in Table (3). As shown in figure (9).

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
47

Tishreen University Journal. Eng. Sciences Series @ 2025 (1) 2asll (47) alaall davxigl) aglall . 0050 daala dlae

7
L

Figure (9): The third scenario in dynamic environment

scenario 3 - Dynamic Obstacle

Path

Algorithm Time iteration length
DWA 2.49 116 7.01
Dijkstra 2.29 145 5.26
RRT 1.54 137 6.51
A* 2.12 165 6.50
improved A* 1.67 140 1.73

Table (3): Time, Iteration and path in environment with dynamic obstacles

Dynamic Obstacle

improved A*
A*

RRT

Dijkstra

DWA

0 7 8 9

Phth Ienéth miteratidns mTime °©

Figure (10): The path planning algorithms with dynamic obstacle

The case study, shows that the improved A* algorithm with weighted heuristic function,
gives better results in path length and iteration compared to traditional A*. As the study
shows that the path length is less 6% for Euclidean, 10% for Manhattan, 29% for quadratic,
compared with the traditional algorithm and increasing the efficiency of robot movement.
The proposed improved A* used weighted quadratic heuristic functions with a curvature
function of pi/8 curvature angle, improved the performance leading to smooth shorter
trajectory. The improved A* reduced path length by 60% and time travelled by 9% in most cases.
Figure (11) shows, reducing the weight of the heuristic function less than one make the
algorithm work bad (big time travelled and path length values), in different cases. Which
confirms the important role of the heuristic function.

The proposed methodology with the weighted heuristic function with 0.5 has worse
performance for the significantly increase in the time travelled and path length values for
all heuristic functions studied, as in figures (11-a, ¢, d). This performance due to the
weakness of the inference function, which caused by the rotation of the robot in path
searching and sometimes it is stuck as the quadratic heuristic function, as shown in figure
(11-b), and giving winding longer path as shown in figure (12-a, b, c).

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
48

Gbe (Uugpd)l (pulé ASalipns A8l 398 s DDMR syl L *A Laa))l55

Euclidean witth curvature

4
3 = e
1
0
weight=0.5 weight=1.5 weight=2.5 weight=3.5
e———=Time e=|terations =—Path length
(@)
Quadratic witth curvature
4
3
2
1
0
weight=1.0 weight=0.5 weight=1.5 weight=2.5 weight=3.5
e—=Time e=|terations =—Path length
(b)
Manhattan witth curvature
4
3 - \
2 /\ -
T
1
0
weight=1.0 weight=0.5 weight=1.5 weight=2.5 weight=3.5
e=——=Time e=—|terations = Path length
(©
journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279

49

Tishreen University Journal. Eng. Sciences Series @ 2025 (1) 2asll (47) alaall davxigl) aglall . 0050 daala dlae

Octile with curvature
3 >

e A

weight=0.5 weight=1.5 weight=2.5 weight=3.5

= Time —Iterations Path length

(d)
Figure (11). Weight consequence comparison of different method.

The optimal weighted heuristic function which is weighted quadratic function with weight
by (1.6) with curvature by angle (x /8) shown in figure (12-d). The proposed methodology
converts the Piecewise linear path into smooth curvature path removing redundant tipping
points in the planned path and shortening its length.

M‘. /“‘

a.Euclidean_curvatu re_0.5_we|ght b. quadratic_curvature_0.5 weight

e S

c. Octile_curvature_0.5_weight d. Optimal weighted Quadratic
function with weight 1.6
Figure (12). Comparison of weighted heuristic functions with curvature on
path track

Cost map Parameters:

The global planner uses a variety of algorithms like the proposed algorithm to compute a
high-level, optimal path for a robot to move from its current position to a target location
over a global map of the environment. The Local planner receives the updated Sensors and
Odometry data and the path provided by global_planner, produces appropriate linear and
angular velocities along the path, publishing to the move_base node to control the robot.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
50

@b s gl puld ASalins A8l 358 aa DDMR syl dnae *A aa)l55

Once the path provided by global_planner fails with dynamic obstacles, the local_planner
requests the global_planner to calculate another.

A launch file is created to execute multiple nodes such as the map server, AMCL,
move_base, Gazebo and Rviz packages in the same time and publish the parameters of the
global and local planners that stored in the parameter servers.

The global cost map consists of three layers: the Static Map Layer, the Inflation Layer and
the Obstacle Map Layer. The Inflation Layer adjusted by the parameters inflation_dist,
cost_scaling_factor and inflation_radius. The higher inflation_dist, the higher the obstacle
surrounding area. The Obstacle Map Layer used to track dynamic obstacles, adjusted by
obstacle_range and raytrace_range parameters. The local cost map consists of Inflation and
Obstacle Map Layers only.

The global planner package provide nodes to plan the optimal path from current position to
goal before moving. The global_planner publish the velocity commands on /plan topic
[15]. Global_planner uses algorithms such as DWA, A*, Dijkstra or RRT etc.

The costmap parameters set to specific values due to the map size and the robot
Dimensions. Where the obstacle_range is set to 0.35 to prevent the robot from stuck the
obstacle. The inflation_radius is set to 0.2 to allow the proposed robot to exit critical areas
like doors to reach the goal, regarding to its dimension, Otherwise inflating obstacles too
much preventing the robot from passing through the door, as in the figure (13). To select
the path planning algorithm. The use_dijkstra parameter is set to default when using
Dijkstra algorithm and to false when using A*.

HEL B

a- tuned parameter b- default parameters
Figure (13). The impact of costmap parameters tuning

To use the navigation stack properly, parameters is tuned as Table (4).

Table 4. Parameters modified for the proposed DDMR
Parameters Definition Values
obstacle_range The default maximum distance from 0.35
the robot at which an obstacle will be
inserted into the cost map in meters.
inflation_radius | The radius in meters to which the map | 0.25
inflates obstacle cost values.
raytrace_range The default range in meters at which 2.0
to ray trace out obstacles from the
map using sensor data.

max_vel_x Max value of forward translate 0.5
velocity
journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279

51

Tishreen University Journal. Eng. Sciences Series @ 2025 (1) 2asll (47) alaall davxigl) aglall . 0050 daala dlae

max_vel theta Max value of angular velocity 0.5
min_obstacle_dist The allowed minimum Euclidean 0.5
distance to the obstacle
goal_tol Acceptable limit of distance to goal 0.5
K in Max value of iterrations 4000
D Max value of each branch length 0.4

Conclusions and Recommendations:

This research, presents a proposed methodology to address the issues of the traditional Ax
such as redundant tipping points, long search time, unsmooth paths, close proximity to
obstacles, and applicability only to static maps. The proposed algorithm presents Ax
algorithm improved by using an optimal weighted heuristic function to decrease the path
length, with curvature formula to deal with large inflection points and turning angles in the
search path.

The simulations-based results show that the algorithm significantly improves path
smoothness, path length, path planning time compared to traditional algorithms, by
reducing path length by 60% in all scenarios, and time travelled in critical path scenario by
6% whereas in dynamic obstacle scenario reduced by 28%, which increasing the robot
movement efficiency.

The simulation results prove the ability of the improved Ax algorithm to increase the path
smoothness by removing redundant tipping points, and decreasing path length, with more
iterations, which leads to shorter and smoother path, leading to better handling complex
environment conditions by avoiding dynamic obstacles effectively.

References:

[1] B. Popoola, ROBOTICS AND MACHINE LEARNING, 2024.

[2]

[3]
[4]
[5]

[6]

[7]

[8]

A. Gasparetto, P. Boscariol, A. Lanzutti and R. Vidon, "Path Planning and Trajectory
Planning Algorithms: A General Overview," in Motion and Operation Planning of
Robotic Systems. Mechanisms and Machine Science,, G. Carbone and F. Gomez-Bravo,
Eds., Springer, Cham, 2015.

M. Reda, A. Onsy, A. Haikal and A. Ghanbari, "Path planning algorithms in the
autonomous driving system: A comprehensive review," no. 174, 2024.

Q. Hongwei, S. Shiliang, W. Ting, X. Yu, J. Yi and C. Zonghan, "Review of
Autonomous Path Planning Algorithms for Mobile Robots,"” vol. 7, no. 3, 2023.

H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavarki and S.
Thurn, Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT
Press, 2005.

T. Grebner, P. Schoeder, V. Janoudi and C. Waldsch, "Radar-Based Mapping of the
Environment: Occupancy Grid-Map Versus SAR,” IEEE Microwave and Wireless
Components Letters, pp. T. Grebner, P. Schoeder, V. Janoudi and C. Waldschmid, 2022.

K. Li, X. Gong, M. Tahir, T. Wang and R. Kumar , "Towards Path Planning Algorithm
Combining with A-Star Algorithm and Dynamic Window Approach Algorithm,"” vol. 6,
no. 14, 2023.

X. Li, X. Hu, Z. Wang and Z. Du, "Path Planning Based on Combination of Improved

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279

52

@b s gl puld ASalins A8l 358 aa DDMR syl dnae *A aa)l55

A-STAR Algorithm and DWA Algorithm,” in 2nd International Conference on
Artificial Intelligence and Advanced Manufacture (AIAM), Manchester, United
Kingdom, 2020.

[9] Y. Li, R.Jin, X. Xu, Y. Qian, Z. Wang, S. Xu and H. Wang, "A Mobile Robot Path
Planning Algorithm Based on Improved A* Algorithm and Dynamic Window
Approach,” 2022.

[10] Z. Mi, H. Xiao and C. Huang, "Path planning of indoor mobile robot based on improved
A* algorithm incorporating RRT and JPS," AIP Advances, 2023.

[11] A. Patel, "Amit’s A* Pages," [Online]. Available:
https://theory.stanford.edu/~amitp/GameProgramming/index.html. [Accessed 10 11 2024].

[12] A. G. P. E., "Introducing Calculus to the High School Curriculum: Curves, Branches
and Functions,” ATLANTA, p. Page 23.815.3, 2013.

[13] R. Dhaouadi and A. Abu Hatab, "Dynamic Modelling of Differential-Drive Mobile
Robots using Lagrange and Newton-Euler Methodologies: A Unified Framework,"
Advances in Robotics & Automation, vol. 2, no. 2, 2013.

[14] A. Patil, "Recovery Behaviours used in Navigation Stack - ROS," Medium, [Online]. Available:

https://medium.com/@patiladityal309/recovery-behaviours-used-in-navigation-stack-
ros-5df991f408c7. [Accessed 10 11 2024].

[15] K. Zheng, ROS Navigation Tuning Guide, researchgate, [Online]. Available:

https://www.researchgate.net/publication/318011822, 2020.

journal.tishreen.edu.sy Print ISSN: 2079-3081 , Online ISSN:2663-4279
53

