An Econometric Testing for The Application of CAPM in Damascus Stock Exchange

Dr. Fadi Khlil^{*} Dr. Hadi Khlil^{**} Zo-Alffakar Othman^{***}

(Received 15/3/2024. Accepted 21/5/2024)

□ ABSTRACT □

The study mainly aimed to test the validity of the Capital Asset Pricing Model (CAPM) in the Damascus Stock Exchange.

The researcher tested CAPM by (Fama & MacBeth, 1973) approach with daily observations for the period from 1/1/2016 to 31/12/2023.

The researcher used a portfolio of eight listed companies in the Damascus Stock Exchange. After we have done the descriptive tests on the research variables (Normal distribution – Unit Root test – Autocorrelation and Partial Autocorrelation test), the researcher used ARDL model to test CAPM.

The study showed that CAPM invalid for application in the Damascus Stock Exchange, in spite of the model was significant in the first regression.

We can say that CAPM - ARDL (4,4) was the best representative of the relationship between the excess return of market portfolio (DERm) and the excess return of managed portfolio (DERp).

Keywords: Modern Portfolio Theory /MPT/, Capital Asset Pricing Model /CAPM/, Autoregressive Distributed Lag Models /ARDL/, Diversification, Risk.

Copyright :Tishreen University journal-Syria, The authors retain the copyright under a CC BY-NC-SA 04

journal.tishreen.edu.sy

^{*}Associate Professor, Department Of Statistic And Programming, Faculty Of Economies, Tishreen University, Syria. fadi.khalil@tishreen.edu.sy

[&]quot;Associate Professor, Department Of Banking & Finance, Faculty Of Economies, Tartus University, Syria. hadi.khalil@tartous-univ.edu.sy

Master Degree Student, Department Of Statistic And Programming, Faculty Of Economies, Tishreen University, Syria. zoalffkarothman@gmail.com

دراسة قياسية الختبار نموذج تسعير الأصول الرأسمالية في سوق دمشق للأوراق المالية

الدكتور فادي خليل* الدكتور هادي خليل** ذوالفقار عثمان***

(تاريخ الإيداع 15 / 3 / 2024. قُبل للنشر في 21 / 5 / 2024)

□ ملخّص □

هدفت الدراسة بشكل أساسي إلى اختبار إمكانية تطبيق نموذج تسعير الأصول الرأسمالية CAPM في سوق دمشق للأوراق المالية.

اختبر الباحث CAPM وفق منهجية (Fama & MacBeth ،1973) بمشاهدات يومية للفترة الممتدة من 2023/12/31 حتى 2023/12/31.

استخدم الباحث محفظة مكونة من ثماني شركات مدرجة في سوق دمشق للأوراق المالية.

بعد إجراء الاختبارات الوصفية لمتغيري البحث (التوزيع الطبيعي – اختبار جذر الوحدة – اختبار الارتباط الذاتي والذاتي الجزئي)، تم استخدام نموذج ARDL في اختبار CAPM.

بينت الدراسة أن نموذج CAPM غير قابل للتطبيق في سوق دمشق للأوراق المالية، على الرغم من أن النموذج كان معنوباً في الانحدار الأول.

يمكن القول إن نموذج (4,4) CAPM - ARDL أفضل ممثل للعلاقة بين العائد الزائد لمحفظة السوق (DERm) والعائد الزائد للمحفظة الاستثمارية (DERp).

الكلمات المفتاحية: نظرية المحفظة الحديثة، نموذج تسعير الأصول الرأسمالية، نموذج الانحدار الذاتي لفترات الإبطاء الموزعة، التنويع، الخطر.

حقوق النشر الموقع النشر بموجب الترخيص عقوق النشر بموجب الترخيص درية، يحتفظ المؤلفون بحقوق النشر بموجب الترخيص CC BY-NC-SA 04

طالب ماجستير - قسم الاحصاء والبرمجة - كلية الاقتصاد - جامعة تشرين - سورية. zo.alffkarothman@tishreen.edu

Print ISSN: 2079-3073 , Online ISSN: 2663-4295

^{*} أستاذ مساعد - قسم الإحصاء والبرمجة - كلية الاقتصاد - جامعة تشرين - سورية. fadi.khalil@tishreen.edu.sy

^{**} أستاذ مساعد - قسم العلوم المالية والمصرفية - كلية الاقتصاد - جامعة طرطوس - سورية.

hadi.khalil@tartous-univ.edu.sy

مقدمة:

مهما كانت دوافع الاستثمار وأهدافه من غير المحبب الاستثمار في أصول مفردة. فالتتويع عامل حيوي وأساسي عند الرغبة في الخوض في الأسواق المالية اعتماداً على القاعدة

Don't put all your eggs in one basket or Spreading Your Risks هنا يثور التساؤل حول الحل لمشكلة توقع العائد المستقبلي الذي سينتج عن الاستثمار في محفظة أصول مالية منوعة بمستوى خطر محسوب، لتحقيق مستوى العائد المطلوب الذي يرغبه المستثمر وبما يحقق قاعدة التنويع السابقة. حيث أن أكبر المشكلات التي تواجه الذين يحاولون التنبؤ بسلوك أسواق رأس المال غياب نظريات الاقتصاد الكلي والجزئي

ان أخبر المستملك الذي تواجه الذين يحاولون التنبو بسنوك السواق راس المان عياب تطريات الاقتصاد الكلي والجرني التي تتعامل مع ظروف الخطر.

تعد نظرية المحفظة Portfolio Theory لـ Harry Markowitz عام 1959 الأساس الذي أرست دعائم (MPT) كم المحفظة Modern Portfolio Theory والنماذج المالية القياسية والتي قدمها أولاً Sharpe and Lintner بنموذج تسعير الأصول الرأسمالية (Capital Asset Pricing Model (CAPM).

مشكلة البحث:

في ظل عدم توافر نموذج مالي موثوق يستخدم في تقييم أسهم الشركات المدرجة في سوق دمشق للأوراق المالية ويساعد المستثمرين على اتخاذ قراراتهم في تجنب الخطر وتحقيق عائد مجزي والتعرف على الفرص الاستثمارية المتاحة. يمكن صياغة مشكلة البحث بالتالي:

- هل يمكن التنبؤ بأسعار (بعوائد) الأصول المالية المتداولة في سوق دمشق للأوراق المالية؟
- هل تعتبر نماذج تسعير الأصول الرأسمالية صالحة للتطبيق في سوق دمشق للأوراق المالية؟
- ما هو النموذج ذو الكفاءة الأعلى في تقييم الأسهم الشركات المدرجة في سوق دمشق للأوراق المالية مصمم خصيصاً لطبيعة السوق المالي السوري.

أهمية البحث وهدفه:

نتبع أهمية البحث من بيان إمكانية تطبيق نموذج تسعير الأصول الرأسمالية في التنبؤ بعوائد الأسهم للشركات المدرجة في سوق دمشق للأوراق المالية. يساهم هكذا إجراء في عملية التنمية الاقتصادية للدولة ككل وخصوصاً بعد ما يعانيه الاقتصاد السوري من عقبات بهدف توجيه المدخرات والاستثمارات بالاتجاه الصحيح.

يمثل الهدف الأساسي للبحث الربط بين الاقتصاد المالي والقياسي بما يمكن من المعرفة المستقبلية بحجم الخطر وطبيعته في سوق دمشق للأوراق المالية ومساعدة المستثمرين الحاليين والمحتملين بوضع نموذج مالي إحصائي موثوق للتنبؤ بأداء سوق دمشق للأوراق المالية وتجنب الخطر الناتج عن الاستثمار في هذا السوق.

متغيرات البحث:

يتم اختبار صلاحية نموذج CAPM للتطبيق والتنبؤ بمنهجية تعتمد على تحليل الانحدار على مرحلتين، وبالتالي تتمثل متغيرات البحث كما يلى:

المرحلة الأولى: اختبار بيانات السلسلة الزمنية لتقدير معامل المخاطر المنتظمة β وتكون المتغيرات:

المتغير التابع (DERp): العائد الزائد للمحفظة الاستثمارية ويمثل الفرق بين معدل العائد على المحفظة الاستثمارية ومعدل العائد خالى الخطر.

المتغير المستقل (DERm): العائد الزائد لمحفظة السوق ويمثل الفرق بين معدل العائد على محفظة السوق (عائد مؤشر سوق دمشق للأوراق المالية) ومعدل العائد خالى الخطر.

المرحلة الثانية: إجراء تحليل مقطعي ثاني بهدف التحقق من أن معامل \hat{eta} المقدّر من النموذج الأول قادر على تفسير التغيرات في المتغير التابع وتكون المتغيرات:

المتغير التابع: متوسط العائد الزائد للمحفظة الاستثمارية DREp.

المتغير المستقل: معامل \hat{eta} المقدّر من نموذج الانحدار الأول.

فرضيات البحث:

سيختبر البحث الفرضيات التالية ليتم اثبات صدقها وصحتها ضمن الفترة المحددة للبحث.

الفرضية الرئيسة الأولى:

H0: لا يعتبر نموذج CAPM قابلاً للتطبيق والاستخدام في سوق دمشق للأوراق المالية.

الفرضية الرئيسة الثانية:

H0: معامل \hat{eta} المقدّر غير فعال في شرح التغيرات بمتوسط العائد الزائد للمحفظة الاستثمارية المختبرة.

مجتمع البحث:

يتكون مجتمع الدراسة من جميع الشركات المدرجة في سوق دمشق للأوراق المالية والبالغ عددها / 27/ شركة مع استعاد:

1- الشركات التي لا يتوافق تاريخ ادراجها مع بداية فترة الدراسة.

2-شركات قطاعات التأمين - الزراعة - الصناعة وبعض المصارف بسبب ضعف الأداء.

وبذلك تتكون عينة البحث النهائية من /8/ شركة بواقع /7/ مصرف وشركة تأمين للفترة الممتدة بين 2016-2023.

تم تشكيل محفظة وحيدة من العينة بأوزان نسبية متساوية لكل سهم داخل المحفظة 12.5%.

مصارف						تأمين	
IBTF	SIIB	QNBS	SGB	FSBS	СНВ	BBSY	ATI

حيث بلغ إجمالي المشاهدات 1830 مشاهدة.

منهجية البحث:

سنتبع في هذه الدراسة المنهج الوصفي التحليلي وذلك وفق الآتي:

- جمع الأساس النظري حول نماذج تسعير الأصول الرأسمالية والدراسات التطبيقية لهذه النماذج المختلفة.
 - تحديد متغيرات ومجتمع الدراسة وجمع البيانات المالية اللازمة لبناء نماذج تسعير الأصول الرأسمالية.
 - استخدام أساليب الإحصاء الوصفي لعرض خصائص البيانات المدروسة.
 - تطبيق النماذج الاقتصادية القياسية المالية المختلفة لقياس التقلبات في أسعار الأصول الرأسمالية.

الإطار النظري للبحث

نموذج تسعير الأصول الرأسمالية (نموذج العامل الواحد)

Capital Asset Pricing Model /CAPM/ or (The Single Factor Model)

أعمال Markowitz في دراسة واختيار المحفظة المثلى أنتجت ثورة في التمويل المالي وأرست دعائم نظرية التمويل المالي وأرست دعائم نظرية المحفظة يسبب عدة مشاكل في حساب الحديثة /MODEN Portfolio Theory /MPT. لكن التعامل مع نظرية المحفظة يسبب عدة مشاكل في حساب العائد المتوقع والخطر مع تعدد وزيادة الأصول المشكلة للمحفظة. فبدأ بعض الاقتصاديين باستخراج تطبيقات من خلال تطويرهم للنظرية. حيث شكلت أعمال Tobin الاتجاه الأول من الجهود المستخلصة من نظرية المحفظة. واعتماداً على نظرية المحفظة وما توصل له Tobin وضع /Sharpe – Lintner – Mossin / نموذج عام لتوازن أسعار الأصول المالية.(Jensen,1972)

يعد عام 1964 عام تبلور فكرة نموذج تسعير الأصول الرأسمالية عندما قدّم William Sharpe دراسته حول نظرية المحفظة ومن ثم تم توسيع النموذج وتوضيحه بشكل أكبر من قبل (1965) John Lintner.

يتعامل نموذج CAPM بشكل رئيسي مع مشكلة اختيار المحفظة المثلى الخطرة من قبل المستثمرين كارهي المخاطر والذين يملكون البديل في الاستثمار بالأصول خالية المخاطر. (Lintner, 1965)

يرتكز نموذج CAPM على مجموعة من الفرضيات: (Sharpe, 1964) (Lintner, 1965)

- 1. جميع المستثمرين باستطاعتهم الإقراض والاقتراض بمعدل العائد الخالي من الخطر بشكل غير محدود وشروط متساوية والسوق المالي في حالة توازن.
 - 2. البيع على المكشوف ممكن بعد أن كان مستبعداً في تحليل Markowitz.
- يمتلك المستثمرين نفس الرؤية الاقتصادية فهم يسعون لامتلاك محفظة السوق. والاختلاف الوحيد بين المستثمرين
 كمية الأصول الخطرة وغير الخطرة ضمن محافظهم.
 - 4. يركز المستثمرون على فترة واحدة للاستثمار وهم كارهون للمخاطر.
 - 5. سوق الأوراق المالية سوق منافسة كامل. بما يتخلله من افتراض عدم وجود ضرائب أو تكاليف معاملات.
- 6. كل مستثمر فردي يمكنه أن يستثمر كامل ثروته أو أي جزء منها في الأصل خالي المخاطر أو الأصول الخطرة أو مزيج بينهما.

الاختبارات التجريبية لنموذج CAPM

اختبار نموذج CAPM يعتمد على عدة نقاط (شروط) قابلة للاختبار للعلاقة بين العائد المتوقع ومخاطر السوق والمفروضة من قبل معادلة النموذج. (1973، MacBeth)

- 1. العلاقة بين العائد المتوقع لكل الأصول و βi خاصتهم في أي محفظة كفء خطية.
 - 2. βi مقياس للمخاطر الكلية للأصل i في المحفظة الكفء M.
- 3. علاوة مخاطر السوق The Market Risk Premium موجبة أي العائد المتوقع على محفظة السوق أعلى من العائد خالي المخاطرة $E(R_m)-R_f)>0$. وتمثل العائد الإضافي الذي يتوقعه المستثمر زيادة عن معدل العائد خالي المخاطرة عند الاستثمار بكمية معينة من الأصل الخطر المفرد أو محفظة أو إدخال أصل لمحفظة معينة.
 - 4. عوائد الأصول داخل المحفظة المنوعة غير مرتبطة.

إن الحكم على صلاحية النموذج تتوقف على الاختبارات التجريبية ونتائجه وليس افتراضاته. يفترض CAPM أن العائد المتوقع على الأصل أ تابع خطي إيجابي لـ βi الأصل والتي تمثل معلمة كفء في وصف الانحدار المقطعي للعائد المتوقع.

slope (β i) أولاً على أصول فردية كما في دراسة (Jensen, 1972) رُكز فيه على تنبؤ الميل intercept والمعلمة التقاطعية intercept للعلاقة الخطية بين العائد المتوقع للأصول الفردية و β i خاصتهم.

خلق اختبار النموذج بناءً على أصول فردية مشكلتين الأولى: إن βi المقدرة للأصول الفردية غير دقيقة حيث كانت نتائج اختبار النموذج سطحية. أوجد هذا مشكلة في القياس عند استخدامها لشرح متوسط العائد عند تطبيق الانحدار المقطعي الثاني. المشكلة الثانية: بواقي الانحدار لديها قوة نسبية في تفسير التغيرات في المتغير التابع وهي ذات ارتباط إيجابي فيما بينها.

لتحسين الدقة في الاختبارات التجريبية وتقدير βi بشكل مناسب قام عدد من الباحثين بالعمل ضمن محافظ لتلافي المشكلتين السابقتين لاختبار النموذج منهم (Black). موضحاً أنه إذا كان CAPM يشرح عوائد الأصول الفردية فيجب أيضاً يجب أن يشرح متوسط العائد على محفظة منوعة. كما أن تقدير βi بالنسبة لمحفظة أكثر دقة من تقديرها بالنسبة لأصل فردى.

(Fama & MacBeth ،1973) اقترحوا طريقة لمعالجة مشكلة الاستدلال الناتجة عن ارتباط البواقي في انحدار المقطع العرضي الثاني، فبدلاً من تقدير انحدار مقطعي فردي لمتوسط العائد الشهري على βi المقدرة لمحفظة منوعة خلال الفترة المدروسة قدروا الانحدار المقطعي

month – by – month لمتوسط العائد الشهري لمحفظة منوعة على βi المقدرة شهرياً.

وضح (Jensen,1972) من اختبار السلسلة الزمنية لـ CAPM أن متوسط العائد المتوقع للأصل يفسر بشكل كامل بالمقدار (Jensen,1972) هذا يفرض أن α (المعلمة التقاطعية) تساوي الصفر لكل أصل إذا كان النموذج صحيح تجريبياً. أي معامل β يشرح كل التغير في العائد الزائد للأصل المدروس.

(Jensen, 1972)

وبالتالي H_0 : $lpha_1=lpha_2=\cdots=0$ لكافة الأصول

يشار للعائد الفائض بنموذج CAPM بـ αi ويمثل الحد الثابت في نموذج الانحدار هذا الحد يجب أن يكون مساوياً للصفر أي لا أحد يحقق عوائد أعلى من محفظة السوق. أي أن αi تقيس الأداء غير الطبيعي أو أخطاء التسعير ويتم استخدامها أحياناً في إنشاء تقديرات لكيفية استجابة أسعار الأصول للمعلومات الجديدة.

تمت الاختبارات التجريبية لنموذج CAPM وفق منهجية تتكون من خطوتين الأولى انحدار السلاسل الزمنية CAPM وفق منهجية تتكون من خطوتين الأولى انحدار السلاسل الزمنية Series Regression لاستخراج قيم معاملات بيتا للأصول ضمن محفظة على افتراض وجود علاقة خطية بين عائد الأصل الرأسمالي وعائد محفظة السوق يمكن تقديرها بواسطة بيانات تاريخية.

(Fama & MacBeth 1973)

$$R_{it} - R_{ft} = \alpha_i + \beta_i (R_{mt} - R_{ft}) + \varepsilon_{it}$$

. تكون فرضية العدم هنا المعلمة التقاطعية $lpha_i$ تختلف معنوياً عن الصفر

 H_0 : α_i is significantly different from zero

يجب أن يكون الحد الثابت مساوياً للصفر لكي يكون النموذج صحيحاً.

يتم ثانياً اجراء تحليل انحدار مقطعي Cross-Sectional Regression لمعرفة أثر معاملات بيتا المقدرة على متوسط العوائد الزائدة للمحافظ المختبرة أو الأصول المفردة.(Jensen,1972)

$$\overline{R}_{it} = y_0 + \hat{b}_i y_1 + \epsilon_i$$

.i متوسط العائد الزائد للأصل \overline{R}_{it}

متوسط العائد الزائد لمحفظة السوق. y_1

حيث \hat{b}_i مقدرة من الانحدار الأول أما المعلمات المقدرة من الانحدار المقطعي y_0 , y_1 تتم مقارنتهم ب $y_1=\overline{R}_m-R_f$ (متوسط العائد الزائد لمحفظة السوق

الدراسة التطبيقية:

صعويات الدراسة

نتسم سوق دمشق للأوراق المالية منذ بداية التداول فيها عام 2009 حتى تاريخه ببعض الخصائص التي أصبحت عائقاً أمام إتمام البحث وهي:

- صغر حجم السوق شكل هذا ضعف في حركة التداول. وتركز الصفقات الضخمة بالشركات كبيرة الحجم. عُكس ذلك في ثبات أسعار أسعار المدرجة على فترات طويلة امتدت لسنوات أحياناً بالمتوسط (أسعار اغلاقها ثابتة نسبياً).
- عائد مؤشر سوق دمشق للأوراق المالية DWX (الذي سيستخدم كبديل عن عائد محفظة السوق) غالباً ما كان سلساً.
 - تأثر السوق المالي والحياة الاقتصادية بشكل عام بالأوضاع الأمنية السائدة في سورية منذ 2011.
- تزايد معدل التضخم بشكل كبير في السنوات الأخيرة وأسعار صرف العملات الأجنبية وتأثير المضاربات وتوسع السوق السوداء والرشوة والفساد الإداري.
- لم يستطع الباحث من تحديد معدل عائد فعلي كبديل عن المعدل خالي الخطر (في ظل معدل التضخم المرتفع) لذلك تم اعتباره صفراً.

حساب العوائد وتكوين المحفظة الاستثمارية (العوائق والبدائل)

أولاً: لحساب قيم المتغير المستقل (DERm): تم جمع جميع أسعار الإغلاق لمؤشر سوق دمشق للأوراق المالية DWX في الأيام التي تم فيها التداول لحساب العائد التاريخي للمؤشر لاستخدامه كبديل عن عائد محفظة السوق باستخدام $HPR = \frac{P_t - P_{t-1}}{P_{t-1}}$

ليمر الاغلاق عند الزمن P_t

-1 سعر الاغلاق عند الزمن P_{t-1}

تم اعتبار معدل العائد خالي الخطر صفر وبالتالي العائد الزائد لمحفظة السوق يمثل عائد مؤشر سوق دمشق للأوراق المالية DWX.

ثانياً: لحساب قيم المتغير التابع (DERp): تم تجميع أسعار إغلاق أسهم الشركات المدرجة في سوق دمشق للأوراق المالية بنفس التواريخ التي تم فيها حساب عائد المؤشر باستثناء الشركات التي لم يتوافق تاريخ ادراجها مع فترة بداية الدراسة. وتم حساب التغير اليومي (العائد الرأسمالي) على اعتباره العائد الوحيد الذي يمكن أن يتحقق للسهم كون الأرباح الموزعة كانت نادرة (مرة واحدة بالسنة) بالنسبة لبعض الشركات ومعدومة لشركات أخرى ضمن الشركات التي تم اختيارها لتمثل عينة البحث. أي بنفس طريقة حساب عائد مؤشر السوق.

تم تشكيل المحفظة الاستثمارية المختبرة من ثماني شركات مدرجة في السوق بواقع سبع مصارف وشركة تأمين واحدة. كون نسب التداول على أسهم شركات هذين القطاعين كانت الأعلى خلال سنوات الدراسة وهذين القطاعين الأعلى رسملة في السوق.

بعد أن أتم الباحث حساب معدل العائد اليومي للشركات الثمانية. تم إعطاء أوزان نسبية متساوية عند تشكيل المحفظة وبلغت 12.5% لكل سهم (عائد السهم اليومي × 12.5%). بعد حساب العائد الرأسمالي المرجح بالأوزان النسبية لكل سهم تم حساب الوسط الحسابي البسيط لعائد المحفظة (مجموع عوائد أسهم الشركات المكونة للمحفظة مضروب كل منها بـ 12.5% مقسوماً على 8)

بعد هذه العمليات على البيانات الخاصة بسوق دمشق للأوراق المالية تم تفريغها في Excel لاختبار نموذج CAPM. اختبار CAPM في سوق دمشق للأوراق المالية

من أجل صياغة أفضل نموذج ملائم لوصف التغيرات في سوق دمشق للأوراق المالية وتقدير معالمه من أجل إجراء تتبؤات مستقبلية لأسعار (عائد) المحفظة المشكلة من أسهم الشركات المدرجة في السوق. سيتم استخراج قيم βi المقدّرة بإجراء الانحدار الأول كما هو متبع في دراسة (Jensen,1972) لمتغيري البحث.

الجدول (1) اختبار CAPM - ARDL

Dependent Variable: DERP

Method: ARDL

Date: 05/11/24 Time: 07:31 Sample: 1/11/2016 12/21/2023 Included observations: 1826 Dependent lags: 4 (Automatic)

Automatic-lag linear regressors (4 max. lags): DERM Deterministics: Restricted constant and no trend (Case 2)

Model selection method: Akaike info criterion (AIC)

Number of models evaluated: 20

Selected model: ARDL(4,4)

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
DERP(-1)	0.310299	0.023569	13.16563	0.0000
DERP(-2)	0.022032	0.024590	0.895990	0.3704
DERP(-3)	0.081494	0.024594	3.313511	0.0009
DERP(-4)	0.060106	0.023440	2.564227	0.0104
DERM	0.149499	0.002252	66.38078	0.0000
DERM(-1)	-0.037107	0.004240	-8.751524	0.0000
DERM(-2)	-0.006469	0.004304	-1.503121	0.1330
DERM(-3)	-0.017302	0.004313	-4.011173	0.0001
DERM(-4)	-0.012378	0.004159	-2.976577	0.0030
C	0.000615	0.001619	0.379490	0.7044
R-squared	0.798887	Mean depend	lent var	0.032559
Adjusted R-squared	0.797890	S.D. depende		0.143607
S.E. of regression	0.064561	Akaike info criterion		-2.636954
Sum squared resid	7.569285	Schwarz criterion		-2.606780
Log likelihood	2417.539	Hannan-Quinn criter.		-2.625824
F-statistic	801.5262	Durbin-Watson stat		1.998364
Prob(F-statistic)	0.000000			

^{*}Note: p-values and any subsequent test results do not account for model selection.

المصدر: من إعداد الباحث اعتماداً على مخرجات EViews 13

يتضح من الجدول أن β= 0.149499 وهي معنوية وموجبة بمعنى أن التغير في محفظة السوق بمقدار درجة واحدة سيقابله تغير في عائد المحفظة الاستثمارية بمقدار 15%. بمعنى آخر أن عائد المحفظة المختبرة أقل حساسية للتغيرات في السوق (مخاطر أقل من مخاطر السوق بعائد أقل من عائد محفظة السوق). كما أن إحصائية -F statistic تشير إلى المعنوية الكلية لنموذج الانحدار.

ثابت معادلة الانحدار $\alpha = 0.000615$ يجب أن يكون مساوياً للصفر.

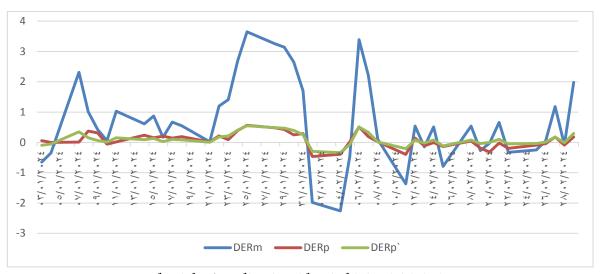
نلاحظ أن قيمة المعلمة التقاطعية تتناهى للصفر وهي غير معنوية إحصائياً.

معامل التحديد مرتفع 80% أي أن معامل β المقدر يمكن أن يفسر 80% من التغيرات في عائد المحفظة الاستثمارية.

إحصائية اختبار Durbin-Watson =1.998364 وهي دليل على عدم وجود مشكلة ارتباط الذاتي.

يمكن القول إن النموذج المقترح من اختبار ARDL جيد بسبب أن قيمة معامل التحديد ومعامل التحديد المعدل وصلت لـ 80%. والمعادلة التالية تصف النموذج المقترح

 $R_{pt} - R_{ft} = 0.000615 + 0.149499(R_{mt} - R_{ft})$


بعد تقدير النموذج ومع معنوية β المقدرة ونموذج الانحدار بشكل عام سنختبر قدرة النموذج الانحدار بشكل عام سنختبر قدرة النموذج ARDL (4,4) على استخراج قيم تتبؤية لعائد المحفظة الاستثمارية.

الجدول (2) القيم الفعلية والتنبؤية لعائد المحفظة الاستثمارية باستخدام (4,4)

القيم الفعلية			القيم التنبؤية		
Date	Rm	Rp	Rp`	التغير (Rp`- Rp)	
03/01/2024	-0.65	0.0573438	-0.0965594	-0.153903	
04/01/2024	-0.35	0.0014063	-0.0517097	-0.053116	
07/01/2024	2.31	0.0109375	0.34595769	0.3350202	
08/01/2024	1.01	0.3720313	0.15160899	-0.220422	
09/01/2024	0.42	0.3101563	0.06340458	-0.246752	
10/01/2024	0.06	-0.0592188	0.00958494	0.0688037	
11/01/2024	1.03	0.0129688	0.15459897	0.1416302	
14/01/2024	0.61	0.2354688	0.09180939	-0.143659	
15/01/2024	0.87	0.15375	0.13067913	-0.023071	
16/01/2024	0.17	0.2073438	0.02602983	-0.181314	
17/01/2024	0.67	0.1423438	0.10077933	-0.041564	
18/01/2024	0.55	0.1901563	0.08283945	-0.107317	
21/01/2024	0.02	0.0160938	0.00360498	-0.012489	
22/01/2024	1.2	0.2142188	0.1800138	-0.034205	
23/01/2024	1.41	0.0914063	0.21140859	0.1200023	
24/01/2024	2.7	0.3920313	0.4042623	0.0122311	
25/01/2024	3.65	0.5654688	0.54628635	-0.019182	
28/01/2024	3.25	0.4809375	0.48648675	0.0055492	
29/01/2024	3.14	0.4289063	0.47004186	0.0411356	
30/01/2024	2.65	0.2496875	0.39678735	0.1470999	

	القيم الفعلية		ؤية	القيم التنب
Date	Rm	Rp	Rp`	التغير (Rp`- Rp)
31/01/2024	1.7	0.28875	0.2547633	-0.033987
01/02/2024	-1.98	-0.4635938	-0.295393	0.1682007
04/02/2024	-2.26	-0.3935938	-0.3372527	0.056341
05/02/2024	-0.47	0.0151563	-0.0696495	-0.084806
06/02/2024	3.39	0.51	0.50741661	-0.002583
07/02/2024	2.21	0.1871875	0.33100779	0.1438203
08/02/2024	0.1	0.0210938	0.0155649	-0.005529
11/02/2024	-1.37	-0.3976563	-0.2041986	0.1934576
12/02/2024	0.54	0.14	0.08134446	-0.058656
13/02/2024	-0.15	-0.1139063	-0.0218099	0.0920964
14/02/2024	0.51	-0.0039062	0.07685949	0.0807657
15/02/2024	-0.79	-0.1382813	-0.1174892	0.020792
18/02/2024	0.54	0.0478125	0.08134446	0.033532
19/02/2024	-0.27	-0.193125	-0.0397497	0.1533753
20/02/2024	-0.02	-0.3153125	-0.002375	0.3129375
21/02/2024	0.66	-0.020625	0.09928434	0.1199093
22/02/2024	-0.33	-0.1953125	-0.0487197	0.1465928
25/02/2024	-0.25	-0.08875	-0.0367598	0.0519903
26/02/2024	0.05	-0.0414063	0.00808995	0.0494962
27/02/2024	1.18	0.1795313	0.17702382	-0.002507
28/02/2024	-0.08	-0.0907813	-0.0113449	0.0794363
29/02/2024	1.98	0.1765625	0.29662302	0.1200605

المصدر: من إعداد الباحث اعتماداً على مخرجات Excel

الشكل (1) القيم الفعلية والتنبؤية لعائد المحفظة الاستثمارية اليومية

المصدر: من إعداد الباحث اعتماداً على مخرجات Excel

من الشكل السابق نتبين أن القيم الفعلية تختلف عن القيم التنبؤية بشكل عكسي في حين نلاحظ ارتفاع عائد المحفظة الفعلي يكون عائد المحفظة المتوقع من نموذج الانحدار منخفض في خلال الفترة بين 2024/1/14 و 2024/1/18. لكن النهج العام نلاحظ أن القيم الفعلية والمتوقعة تسير بالتوازي ومتوافقة مع حركة مؤشر السوق (محفظة السوق) لكن مع قفزات سعرية كبيرة. أي بمعنى آخر يمكن الاعتماد على نموذج CAPM في استخراج القيم التنبؤية للمحفظة الاستثمارية. ويمكن تفسير الحركة العكسية بين المعدلين بنشاط جيد لأسهم الشركات المدرجة الأخرى غير المختبرة أو حالة شاذة ويمكن التأكد من صحة وصدق التنبؤ بعد إجراء الاختبار على سلسلة أطول خلال 2024.

لاختبار صلاحية CAPM وإمكانية تطبيقه في سوق دمشق للأوراق المالية وفق بيانات يومية يجب إجراء الانحدار الثاني باعتماد معامل β المقدر كمتغير مستقل ومتوسط العائد الزائد للمحفظة الاستثمارية المختبرة كمتغير تابع.

على الرغم من ان معامل التحديد ذو قيمة مرتفعة نسبياً ومعنوية β إلا أنه لا يمكن تطبيق نموذج CAPM في سوق دمشق للأوراق المالية بالنسبة لمفهوم المحفظة الاستثمارية وذلك كونه لا يمكن اجراء الاتحدار الثاني بسبب قلة عدد المشاهدات (مشاهدة واحدة فقط كون لم نستطيع تكوين أكثر من محفظة).

لا نستطيع إجراء الانحدار على مشاهدة واحدة، هنا الباحث لم يجد حلا سوى الاعتماد في اختبار النموذج على أصول فردية بدلاً من استخدام مفهوم المحفظة لاستخراج معاملات β الخاصة بكل شركة على حدى من الشركات المكونة للمحفظة المختبرة ومن ثم اجراء الانحدار الثاني والمقارنة وكانت النتائج كما يلي.

الجدول (3) معاملات β المقدرة لاختبار انحدار المقطع العرضى الثاني اليومي

رمز الشركة	α	معنوية α	β	معنوية β	متوسط العائد الزائد
IBTF	-0.025464	0.5151	0.947934	0.0000	0.236481
SIIB	-0.072685	0.0399	1.932131	0.0000	0.24324
QNBS	-0.058375	0.1110	1.612159	0.0000	0.248721
SGB	0.021938	0.5443	0.473695	0.0000	0.22506

رمز الشركة	α	معنوية α	β	معنوية β	متوسط العائد الزائد
FSBS	-0.007788	0.8482	0.813914	0.0000	0.184027
СНВ	-0.018871	0.6230	1.496250	0.0000	0.273246
BBSY	0.036545	0.2860	1.659714	0.0000	0.353448
ATI	0.056498	0.1576	0.625538	0.0000	0.309033
DERm	_	_	-	_	0.21569

المصدر: من إعداد الباحث اعتماداً على مخرجات EViews 13

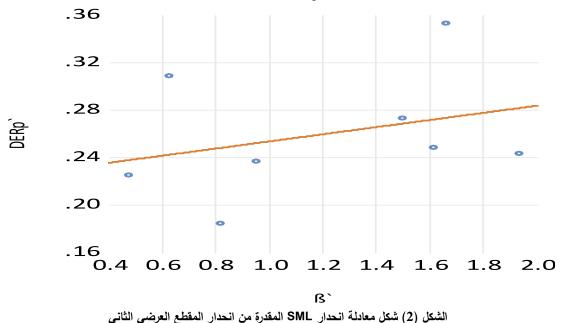
من الجدول السابق يتضح أن معامل β موجب لجميع أسهم عينة البحث ودالة احصائياً لذلك يمكن اعتبارها صالحة للاستخدام لاختبار المقطع العرضي الثاني لنموذج CAPM. لدينا مصرفين لديهما معامل حساسية $1>\beta$ أي لهما حساسية أقل للتغير وبالتالي مخاطره أقل. بينما باقي الاسهم مضمون عينة البحث كان لديها معامل حساسية عالي يبدأ من 8.8 حتى 1.9 وبالتالي مصرف SIIB هو الأعلى مخاطرة ضمن عينة البحث يليه مصرف BBSY ومن ثم مصرف QNBS وهكذا. نتبين أن سهم مصرف SGB مناسب لاستراتيجية BUY and HOLD بينما أسهم المصارف الأخرى مناسبة لعمليات المضاربة.

الجدول (4) اختبار معنوية β من الانحدار المقطعي الثاني اليومي

Dependent Variable: DERP Method: Least Squares Date: 05/11/24 Time: 08:05

Sample: 18

Included observations: 8


Variable	Coefficient	Std. Error	t-Statistic	Prob.
S_01 C	0.030074 0.223213	0.037368 0.048546	0.804816 4.597968	0.4516 0.0037
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.097436 -0.052991 0.053827 0.017384 13.17512 0.647730 0.451630	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Wats c	nt var terion rion n criter.	0.259157 0.052455 -2.793780 -2.773919 -2.927730 0.808477

المصدر: من إعداد الباحث اعتماداً على مخرجات EViews 13

بسبب كون 13 EViews لا يعرض رموز المتغيرات فإن المتغير \hat{eta} المقدّر من الانحدار الأول والمتغير التابع $\overline{
m DERp}$.

بعد إجراء الانحدار الثاني سيتم اجراء مقارنة للحكم على صلاحية نموذج CAPM وكانت النتائج كما يلي: Y0 = 0.223213

Y1=0.030074 هذه القيمة لا تساوي قيمة متوسط العائد الزائد لمحفظة السوق (0.21569) بالإضافة لعدم معنوية β . كما أن إحصائية F-statistic تشير إلى عدم المعنوية الكلية لنموذج الانحدار. كلها عوامل تؤكد أن نموذج CAPM لا يعتبر نموذجاً قابلاً للتطبيق والاختبار في سوق دمشق للأوراق المالية.

المصدر: من إعداد الباحث اعتماداً على مخرجات EViews 13

الشكل يوضح شكل معادلة انحدار SML والعلاقة بين متوسط العائد الزائد للشركات عينة البحث (كونة لا يمكن تشكيل عدة محافظ منوعة لاختبار معنوية النموذج) ومعامل المخاطر المنتظمة β المقدر من الانحدار الأول. حيث نجد أن معامل β غير معنوي وثابت المعادلة لا يساوي الصفر. وهذا يتضح من الرسم البياني فالعلاقة مسطحة نوعاً ما وبالتالي يوجد عوامل أخرى تؤثر في تغير العائد غير معامل β كونه لم يكن قادر على تفسير حركة العائد لأسهم عينة البحث.

يمكن أن تتعدد الأسباب خلف هذا الفشل:

- 1. عدم استخدام عائد خالى المخاطر في الدراسة.
- 2. استخدام معامل β للأصول الفردية لاختبار صلاحية النموذج ضمن محفظة.
 - 3. التسعير غير منطقى في سوق دمشق للأوراق المالية ولا يتبع نمط معين.
- 4. عدم وجود عدد كافي من الأسهم لإدراجها ضمن محافظ منوعة تحقق التنويع الملائم.
 - β . العلاقة غير خطية بين متوسط العائد الزائد للشركات عينة البحث ومعامل β .
- 6. الحد العشوائي من المفترض أن له تباين ثابت عبر الزمن وذو متوسط صفري حيث وبالعودة إلى نموذج CAPM يجب أن تفسر β المقدرة كل التغير في المتغير التابع والحد العشوائي ينتهي للصغر. لكن هذا الفرض غير دقيق عند اختبار السلاسل الزمنية المالية حيث غالباً ما يكون للبواقي أثر في المتغير التابع يسبب عدم كفاءة في النماذج المختبرة للاستدلال والتنبؤ.

اختبار فرضيات البحث:

الفرضية الرئيسة الأولى:

H0: لا يعتبر نموذج CAPM قابلاً للتطبيق والاستخدام في سوق دمشق للأوراق المالية وفق منهجي الاختبار بمشاهدات يومية وشهرية.

أفضت الدراسة الإحصائية إلى أن نموذج CAPM لا يمكن اعتباره نموذجاً قابلاً للتطبيق في سوق دمشق لـلأوراق المالية. ودل على ذلك عدم معنوية معامل β المقدر من الانحدار الثاني. لذلك لا يمكن رفض فرض العدم ونقر بأن نموذج CAPM غير صالح للاستخدام في سوق دمشق للأوراق المالية وفق طريقة الاختبار بالانحدار الخطي على مرحلتين.

الفرضية الرئيسة الثانية:

H0: معامل \hat{eta} المقدّر غير فعال في شرح التغيرات بمتوسط العائد الزائد للمحفظة الاستثمارية المختبرة.

إن معامل β المقدّر من الانحدار الأول معنوي. فالمعامل كان قادراً على تفسير 80% من التغير في المتغير التابع. لذلك يمكن رفض فرض العدم وقبول الفرض البديل والاقرار بأن معامل β للمخاطر المنتظمة قادر على تفسير التغيرات في المتغير التابع في سوق دمشق للأوراق المالية باحتمال قدرة 80%.

النتائج والمناقشة:

بناءً على ما تم عرضه سابقاً سيستعرض الباحث ما توصل له من نتائج وفق عدد من النقاط:

- يعد نموذج CAPM غير قابل التطبيق في سوق دمشق اللأوراق المالية وفق منهجية (Fama & MacBeth ،1973) بتحليل الانحدار على مرحلتين.
- تغيرات العائد الزائد للمحفظة الاستثمارية المختبرة ترتبط بالتغيرات (التقلبات) للعائد الزائد لمحفظة السوق. لكن لا يمكن اعتبار العائد الزائد لمؤشر السوق المتغير المستقل الوحيد والذي يؤثر في المتغير التابع ويفسر حركته.
- تختلف حساسية الشركات المدرجة (عينة البحث) للتغير وفق تقلبات عائد مؤشر السوق. توضح ذلك قيم معاملات β المقدرة.
 - سوق دمشق للأوراق المالية غير كفء عند المستوى الضعيف.
- خلقت الأزمة التي تتعرض لها الجمهورية العربية السورية منذ بداية 2011 حالة عدم استقرار لمختلف أوجه النشاط الاقتصادي، عُكس ذلك في تذبذب كبير لبيانات سوق دمشق للأوراق المالية وعوائد أسهم الشركات المدرجة فيها.
- يعد معامل β المقدر من انحدار السلاسل الزمنية الأول مقياساً كفء لشرح التغيرات في متوسط العائد لأسهم الشركات المدرجة في سوق دمشق للأوراق المالية.
 - معامل β المقدّر من انحدار المقطع العرضي الثاني كان غير معنوي.
- بينت الدراسة الإحصائية لسلسلة بيانات متغيري البحث أنها تعاني من تقلب عالي (High Volatility) أي التغيرات السعرية في سوق دمشق للأوراق المالية مفاجئة وكبيرة. كما أن التقلبات الكبيرة والصغيرة السالبة منها والموجبة تميل إلى أن تتجمع أي التغيرات الكبيرة تميل إلى أن تتبعها تغيرات كبيرة أخرى والتغيرات الصغيرة تتبعها تغيرات صغيرة. هذا يسبب عملية سير عشوائي (random walk process) فالسلاسل تسلك سلوكاً انفجارياً في بعض المشاهدات.

• بينت الدراسة الإحصائية لسلسلة بيانات متغيري البحث أنها تعاني من تأثير الرافعة للاحصائية لسلسلة بيانات متغيري البحث أنها تعاني من تأثير الرافعة والسالبة (Leverage) بمعنى آخر عم تماثل أثر التغيرات الموجبة والسالبة تميل إلى زيادة حدة التقلبات على نحو أكبر من التغيرات الموجبة. فالصدمات الناتجة عن التقلبات عالية جداً وستبقى عالية طالما بقى التباين غير ثابت.

الاستنتاجات والتوصيات:

- اعتماد نموذج CAPM ARDL في عملية إدارة المحفظة والاستثمار في سوق دمشق للأوراق المالية.
- إعادة اختبار CAPM بطرائق مختلفة من حيث عينة البحث بأوزان نسبية مختلفة بهدف التأكد من معنوية النتائج.
- اختبار النماذج المالية المتقدمة متعددة المتغيرات (نموذج تسعير المراجحة ونماذج فاما وفرنش متعددة العوامل) في سوق دمشق للأوراق المالية حين تحسن الأوضاع الاقتصادية.
- دعم فكرة صناديق الاستثمار (صناع السوق) وتفعيل دور المحليين الماليين من خلال نشر التوعية لأهمية النماذج
 المالية.

References:

- Fama, Eugene F; Mac Beth, James, (1973). **Risk, Return, and Equilibrium; Empirical Tests**. The Bell Journal of Political Economy, 81(3), 607-636.
- Fama, Eugene F; French, Kenneth R, (1992). **The Cross-Section of Expected Stock Returns**. The journal of finance, VII (2), 427-465.
- Jensen, Michael C, (1972). **Capital Markets: Theory and Evidence**. The Bell Journal of Economics and Management Science, 3(2), 357-398.
- Lintner, John, (1965). Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. The journal of finance, 47(1), 13-37.
- Markowitz, Harry M, (1952). **Portfolio Selection**. The journal of finance, 7(1), 77-91.
- Sharpe, William F, (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The journal of finance, 19(3), 425-442.