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����  ABSTRACT   ���� 

 

The purpose of this research is to extend some results introduced by Rockafellar [19] 

 in finite-dimensioal spaces to general Banach space using the ρ − Housdoroff distance 

convergent instead of epigraphical convergent . These results are aplications to study the 

second-order epi-derivatives of  function to classe 2
C  and to study the second-order epi-

derivatives of sum two convex function  and  to study the second-order epi-derivatives of  

Moreau-Yosida approximate function also to study of the second-order epi-derivatives of  

composition convex function with linear operator .  
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Introduction: 
   During the last few years many works has been devoted to epigraphical analysis 

and their applications of optimization problems ,it is to study the functions by using the 

property  of their epigraphs, and it is the introduction of original the new concepts: epi-

convergence, epi-distance, epi-derivative, epi-differentiable,  epi- integral….. This 

analysis is addressed naturally  to study the  minimization problems (see for example 

[1,2,3,7, 20]). 

Epi-drivatives have many applictions in optimization as approached through 

nonsmooth analysis. In particular, second-order derivatives can be used to obtain 

optimality conditions and carry out in sensitivity analysis.Many authors have tried to 

define second-order derivatives in quite different ways. Most definitions have been 

confined to finite-valued function; see for example [8,9,11,120]) for nonconvex and 

[2,3,13,22]) for convex. 

The main idea developed in this paper is to replace the Mosco- epi-convergence by 

the ρ -Hausdorff distance convergence, a concept introduced by Mosco too, but developed 

by many authors (see [4,5,6,7,8,9,19,20]), and which has proved to be efficient in the 

quantitative analysis of the stability of minimization problems in general Banach spaces. 

This paper is organized as follows. In section 1, we give general introduction . In 

section 2, we fix the notations and recall some definitions and some known  results 

concerned the second-order epi-derivative of convex function f  and the  proto- 

derivatives of set-valued mapping f∂ . In section 3, 

 we give  the first main result (see proposition 3.2), concerned the  second-order epi-

derivative of  the sum two functions, and we give the second important result (see Theorem 

3.3); that is the cnnection between the second-order epi-derivative of convex function f

and the second-order epi-derivative of  the  Moreau-Yosida approximate f λ  , we prove also 

that the mapping  
f

Jλ  is proto- differentiable , we etablishe  that f Ao  is twice epi- 

differentiable at x  relative to A x
∗ ∗ . 

 

Notation and definitions: 
     Let us recall some definitions and notions, which are of common use in the 

context of convex analysis and optimization; for further information, we can refer to 

[ ]1,13,14 .  Let ( ), .X  be a normed linear space and ( ), .X
∗

∗
 its dual, the duality pairing 

between x X
∗ ∗∈  and  x X∈  is denoted by ,x x

∗〈 〉 , and let :f X R→ of the real 

valued extension function defined on X , we well denote the set of the real valued 

extended functions defined on X  by  
X

R . For a function  
Xf R∈  the set : 

{ }( , ) / ( )epi f x X R f xα α= ∈ × ≤  

is called the epigraph of f , and f is called convex (lower semiconti-nuous) if its 

epigraph is a convex (closed) subset of X R× . Furthermore, f is called proper if its 

epigraph nonempty. 

Again, ( )XΓ will denote the proper, lower semi continuous convex functions defined 

on X  , and dually, ( )X
∗ ∗Γ  will denote the proper, weak* lower semicontinuous convex 

functions defined on X ∗ . It is well known that to each  nonempty closed convex subset C 

of X its (., ) ( ),indicator function C Xδ ∈Γ defined by the formula  
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0
(., )

if x C
C

if x C
δ

∈
= 

+ ∞ ∉
 

For  ( )f X∈Γ , its conjugate  ( )f X
∗ ∗ ∗∈Γ  is defined by the familiar formula 

        { }( ) sup , ( )
x X

f x x x f x
∗ ∗ ∗

∈
= < > −                         

The subdifferential  of 
X

f R∈  at 0x , denoted  by  0( )f x∂ , is defined by  :  

  

{ }0 0( ) / ( ) ( ) , ;
o

f x x X f x f x x x x x X
∗ ∗ ∗∂ = ∈ ≥ + < − > ∀ ∈  

                                 
 This set is convex (closed) if f is convex (lower semi continuous), and one has the 

following equivelent: 

( ) ( )0 0
( ) 0, , , ( ) ,

o
x f x x B x f x f x x x xε ε∗ ∗∈∂ ⇔ ∃ > ∀ ∈ ≥ + < − >   

A Banach spaces X  is said to be Uniformly convex( U.C, in short) if for each 0ε > , 

there exists ( ) 0δ ε > such that whenever ; 

1 , 2(1 ( ))x y and x y then x yε δ ε≤ ≤ − ≥ + ≤ −  

A Banach spaces X  is said to be Uniformly smooth( U.S, in short), if X ∗ is 

Uniformly convex. 

A Banach spaces X  is said to be super-reflexive if and only if , it is U.C and U.S . 

Set-Convergence 
•  Given a sequence { }NnCCn ∈;,  of subsets of  X, the τ -lower limit of the 

sequence { };
n

C n N∈ denoted by liminf n
n

Cτ −  is the closed subset of X defined by:  

{ }liminf : / ( ) ; ;n n n N n n n
n n

C x X x x C x x
ττ ∈− = ∈ ∃ ∈ →  

the τ -upper limit of the sequence { };
n

C n N∈ denoted by limsup n
n

Cτ −  is the closed 

subset of X defined by:  

{ }limsup : / ( ) ; ( ) ; ;
kn k k N k k N k n k

kn

C x X n x k N x C x x
ττ ∈ ∈− = ∈ ∃ ∃ ∀ ∈ ∈ →  

the sequence { };
n

C n N∈ is said to be Kuratowski-painlevé convergent to  C for the 

topology τ , or briefly τ -convergent, if the following conclisions hold:  

  

limsup liminfn n
nn

C C Cτ τ− ⊆ ⊆ −  

We denoted by  lim
n

n
C Cτ= − , is the closed subset of X   

  • • When X is a reflexive Banach space and the sets are closed and convex, the 

sequence { };
n

C n N∈ is said to Mosco- convergent to C , denoted by 

lim
n

n
C M C= − , 

  if                limsup liminfn n
nn

s C C w C− ⊆ ⊆ −  

where s (resp. w) is the strong (resp.weak) topologies on X . 
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Epigraphical convergence [ ]1  

Let { }, : ;
n

f f X R n N→ ∈  be a sequence of extended real valued  

functions. If the sequence { };
n

epi f n N∈  is Kuratowski-painlevé  

convergent to  epi f  in X R×  for the product topology; then we say that the 

sequence { };
n

f n N∈ epi-convergent to f and we write  

lim
n

n
f epi f= − .         

This is equivalent to say that, for any x X∈ ,  the two following statements hold :  

i) for any a sequence ( ) ; / ( ) liminf ( )n n n nn N nn
x x x f x f x

τ

∈
→ ≤ . 

ii) there exists sequence ( ) ; / ( ) limsup ( )n n N n n n
n n

x f x f
τζ ζ ζ∈ → ≥ . 

                                                                                                                                                                      

Mosco-epigraphical convergence . [ ]15  

Let X be a reflexive Banach space and { }, ;
n

f f n N∈  be a sequence of functions to 

( )XΓ . We say that f is the Mosco-epi-limite of the sequence{ };
n

f n N∈  and we write 

lim n
n

f M epi f= − − ,If the sequence { };
n

epi f n N∈  Mosco- convergent to epi f . 

This is equivalent to say that, for any x X∈ ,  the two following statements hold :  

 

i)   for any sequence ( ) ; / ( ) liminf ( )
w

n n n nn N nn
x x x f x f x

∈
→ ≤   

ii)  there exists sequence ( ) ; / ( ) limsup ( )s

n n N n n n
n n

x f x fζ ζ ζ∈ → ≥ .   

ρ-Housdoroff  distances [ ]3   

For all subset C of X , we denote the distance from some point x  in X  to C  by :  

          ( , ) inf
y C

d x C x y
∈

= −   ;    ( , ( , ) )if C d x C= ∅ = + ∞  

For each 0ρ ≥ ,  Bρ  denotes  the closed ball of  radius ρ  ; and for any subset C of 

X , we define  Cρ   by    

:C C Bρ ρ= ∩  

For any pair C and D of subsets of X , the Housdoroff excess of  C  over D is 

defined  by :  

( , ) : sup ( , ) ; ( ( , ) 0 , )
x C

e C D d x D e C D if C
∈

= = = ∅  

and for all 0ρ ≥ , the ρ − Housdoroff distances between  C  and D is defined  by : 

{ }( , ) ( , ) , ( , )haus D C sup e C D e D Cρ ρ ρ=  

A sequence of subsets  ( )
n n N

D ∈  of X , is said to converge with  respect  to the ρ −

Housdoroff distances to some D  iff  for all 0ρ ≥ ,  

                                    lim ( , ) 0
n

n
haus D Dρ→∞

=                             

This means that for each 0ρ ≥ and each 0,ε ≥  for n large enough the following 

inclusios hold  

n n
C B C B and C B C Bρ ε ρ ε∩ ⊂ + ∩ ⊂ + . 
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Clearly, all the above notions make sense in a general normed space X . When X is a 

reflexive Banach space and the sets are closed and convex 

lim ( , ) 0
n

n
haus D Dρ→∞

=  for each 0ρ ≥ ⇒     lim
n

n
D M D

→+∞
= − . 

ρ-Housdoroff  distances on 
X

R  [ ]3   

a) For all 0ρ ≥ , the ρ − Housdoroff  distances between  two functions ,
X

f g R∈ is 

defined  by : 

( , ) ( , )h f g haus epi f epi gρ ρ=  

where  epi f and epi g  are two subsets of  X R× , and the ball of  X R×  is the 

set : 

{ }( , ) / ,
X R

B x X R xρ α ρ α ρ× = ∈ × ≤ ≤  

b) A sequence of functions  ( )
n n N

f ∈ of  
X

R ,  is said to converge with respect  to  the    

ρ − Housdoroff distances to some f   iff  for all 0ρ ≥ ,         lim ( , ) 0
n

n
h f fρ→ ∞

=                              

     We write :     
h

nf fρ→        or       ( ) lim
n

n
f h epi fρ →+∞

= − − . 

       

We recall two fundamental results, the first gives the bicontinuity between the 

functions of ( )XΓ  and it conjugates of ( )X
∗ ∗Γ , and the second gives the continuity of the 

sum functions in ( )XΓ , with respect to the ρ − Housdoroff epigraphical distance .  

 

ρ-Housdoroff  graphical distances: 

Let Y  a general normed space, Given an operator :A X Y→
→ , possibly multivalued, 

its graph is denoted by: 

( ){ }( , ) ;gphA x y X Y y A x= ∈ × ∈  

     (a)  For all 0ρ ≥ , the ρ − Housdoroff graphical distances between  two operators 

:A X Y→
→  and :B X Y→

→ is defined  by : 

( , ) ( , )haus A B haus gph A gph Bρ ρ=  

where  gph A and gph B  are two subsets of  X Y× , and the ball of  X Y×  is the 

set : 

{ }( , ) / ,
X Y

B x y X Y x yρ ρ ρ× = ∈ × ≤ ≤  

     (b)  A sequence of operators  ( )
n n N

A ∈ ,  is said to converge with respect  to  the    

ρ − Housdoroff graphical distances to some A   iff  for all 0ρ ≥ ,  

                           lim ( , ) 0
n

n
haus A Aρ→ ∞

=                      

     The concept ρ − Housdoroff distances on 
X

R is also  called  the  

ρ - Housdoroff epigraphical  distance  introduced in  [ ]5,6  and has been developed 

by many authors in various field [ ]4,5,6, , 20, 21 . 
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Proposition 2.1 [6] 

      Let { }, ;
n

f f n N∈ be a  sequence   of   functions in ( )XΓ .   Then for 

all 0ρ ≥ , we have the following equivalent : 
h h

n n
f f f fρ ρ∗ ∗→ ⇔ →  

 

Theorem 2.2 [ ]4  

Let X be a Banach space. For any sequence { }, ;
n

f f n N∈  closed proper convex 

functions, the following implication holds :  ( ) ( )i ii⇒ where  

        ( )i  ( ) lim
n n

f h epi fρ= − −  

        ( )ii ( ) lim .
n

n
f h gph f N Cρ →+∞

∂ = − − ∂ +  

If X is super-reflexive, then the converse implication holds, that is ( ) ( )i ii⇔ . 

( ) ( ) ( ) ( ) ( ) ( ). , , , , ,
n n n n n n n

N C gph f gph f such that and f fξ η ξ η ξ η ξ η ξ ξ≡ ∃ ∈ ∂ ∃ ∈ ∂ → →  

• What we will be dealing with is a family of functios ( )
0t t

ϕ
>

 parameterized by  

0t > . The    ρ − Housdoroff distances convergence of 
t

ϕ  to ϕ as 0t ↓  is defined in 

a natural way by saying 
n

h

t

ρϕ ϕ→  for every sequence 0
n

t ↓ . i.e 

lim ( , ) 0 , 0
ntn

hρ ϕ ϕ ρ
→ ∞

= ∀ ≥ . 

The following proposition is immediate : 

 

Proposition 2.3   

            Let 
h

n

ρϕ ϕ→ . If  ( )
0n t

ϕ
>

   are closed convex functions, then so is ϕ . 

second-order epi- derivative [ ]16,19,21  

        Let :f X R→  be finite at x X∈ . Let x X
∗ ∗∈ and consider the second-order 

difference quotient functions : 

( ) ( ) ( ){ } ( )2, ,

1
, ; . 0f

t x x
f x t f x t x x X t

t
ϕ ξ ξ ξ∗

∗= + − − < > ∈ >  

If these functions are ρ − Housdoroff epigraphical distance -convergent ( as ( )0t ↓  

to some function ϕ  having ( )0ϕ ≠ − ∞ , then we say that f  is twice epi- differentiable at 

x  relative to x
∗ , and ϕ  is called the second-order epi- derivative of f at x  relative to x

∗ . 

We then write "

,x x
f ∗  instead of ϕ , i.e  

( )''

0, , ,
lim f

tx x t x x
f h epiρ ϕ∗ ∗↓

= − − . 

 

In termes of sequences , 

( )''

, , ,
lim , 0

n

f

nx x t x xn
f h epi tρ ϕ∗ ∗

→+∞
= − − ∀ ↓  

 

    Some elementary properties entailed by these defintions are explored in the 

following propositions. 

 



 ������� �	
���� 
� �����	�� ��� ���
���� ����	�
 ��	 �����   ����� ����
��	 �����ρ���������                          ������ 

142 

Proposition 2.4. [ ]21   

The second-order epi-derivative function "

,x x
f ∗ , if it exists, is lower semicontinuous, 

proper convex, positive homogenity of degree 2, "

,
0

x x
f ∗ ≥  , ( )"

,
0 0

x x
f ∗ =  and 0 is minimal 

point of "

,x x
f ∗ , i.e ( )"

,
0 0

x x
f ∗∈ ∂ . 

Theorem2.5 ( Conjugacy). [ ]21   

              Let :f X R→  be a closed proper convexe function.Then one has  

f  is twice epi- differentiable at x  relative to x
∗  if and only if  f

∗  is twice epi - 

differentiable at x
∗  relative to x . More precisely  we have   :     

( ) ( )
"

"

, ,
.

x x x x
f f∗ ∗

∗
∗=  

proto- derivative  [18]    
 

     Given a multifunction : X Y→
→Γ , a point x X∈ with ( )x φΓ ≠  and a point 

( )y x∈ Γ  . We consider the difference quotient multifunctions : 

( ) ( ){ } ( ), ,

1
; . 0

t x y
D x t y X t

t
ξ ξ ξΓ = Γ + − ∈ >  

If these multifunctions are  ρ − Housdoroff graphical distance -convergent ( as 

( )0t ↓  to some multifunction D , then we say that Γ is proto- differentiable at x  relative 

to y , and D  is called proto- derivative of  Γ at x   relative to y . We then write '

,x y
Γ  

instead of A , i.e  

( )'

, , ,0
lim

x y t x yt
H gph Dρ

Γ
↓

Γ = − −  

In termes of sequences , 

( )'

, , ,lim , 0
nx y t x y n

n
H gph D tρ

Γ

→+∞
Γ = − − ∀ ↓ . 

      Some elementary consequences of the definition of proto – differentiabliliy by : 

Proposition 2.6    

      Let : X Y→
→Γ  be proto- differentiable at x  relative to y , where ( )y x∈ Γ . Then 

proto- derivative '

,x y
Γ  has closed graph and satsisfies: 

( )'

,0 0 ,
x y

and∈ Γ             ( ) ( )' 2 '

, ,x y x y
λξ λ ξΓ = Γ  

for all 0X andξ λ∈ > . 

Proof: The verification as in the finite- dimensional case ( see [ ]18, 2.4proposition ) .  

Thorem 2.7  [20] 

Let :f X R→  be a closed proper convexe function,  x X∈ such that ( )f x is finite 

and x X
∗ ∗∈ . We consider the tow folloing statements : 

(a) f  is twice epi- differentiable at x  relative to x
∗ . 

(b)  ( )x f x
∗ ∈∂ and f∂  is proto- differentiable at x  relative to x

∗ . 

Then  (a)    ⇒  ( b). If X is super- reflexive, we have    (a)   ⇔   (b), and the proto - 

derivative of  f∂  at x  relative to x
∗  is the subdifferential of "

,x x
f ∗ . More precisely,  
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( ) ( )'"

,, x xx x
f f ∗∗∂ = ∂   . 

 

Results and Discussion: 

Proposition 3.1     Let :f X R→  be 2
C convexe function in a neighborhood of 

.x X∈ Then f  is twice epi-differentiable at x  and the the second-order epi-derivatve 

( )
''

,x Df x
f is  given by  

( ) ( ) ( )'' 2

,

1
,

2
x Df x

f D f xξ ξ ξ= < >                          (3.1) 

Proof. By Taylor , s fourmula, one can write 

( ) ( ) ( ) ( ) ( )22, ,f x t f x t Df x D f x tξ ξ ξ ξ ξ ξ θ ξ+ = + < > + < > +  

 

where ( )0
lim 0

t
tθ ξ

↓
= .  Let  

( ) ( ) ( ) ( ) ( )22

,

1
: ,

2

f

t x Df x
D f x tϕ ξ ϕ ξ ξ ξ ξ θ ξ= = < > +  

( ) ( ) ( ) ( )221
: , , :

2
t

D f x and tϕ ξ ξ ξ θ ξ ξ θ ξ= < > =  

It is easly to see that ϕ is convex function and ( )0 0ϕ =   . Since   0 int domϕ∈ , and 

from the result [ ]5, 2.9corollary , we have :  

For all 0ρ ≥ , there is 1 0ρ ≥  and ( )k ρ  such that  

( ) ( )

( ) ( ) ( ){ }
1

0 , ,

max , ; ,0

t t

t

haus haus

k haus haus

ρ ρ

ρ ρ

ϕ ϕ ϕ θ ϕ

ρ ϕ ϕ θ

≤ = +

≤
 

Hence for all 0
n

t ↓ , one has ( )lim , 0
ntn

hausρ ϕ ϕ
→+∞

= i.e  f  is twice epi- 

differentiable at x  relative to ( )Df x , and the the second-order epi- derivatve is  given by 

( )3.1 . 

 
Proposition 3.2 :   Suppose ,f g  are closed proper convexe functions on  X and f  

is 2
C  in a neighborhood of x X∈ . Let h f g= + . Then  

( ) ( ) ( )y Df x x h x x g x
∗ ∗ ∗= + ∈ ∂ ⇔ ∈ ∂                       (3.2)  

 If g is twice  epi- differentiable at x  relative to x
∗ and ( )"

,
int

x x
dom g φ∗ ≠ ,  then  

(a) h  is twice epi- differentiable at x  relative to y
∗ , and  

( ) ( ) ( )'' 2 "

, ,

1
,

2x y x x
h D f x gξ ξ ξ ξ∗ ∗= < > +                   (3.3)  

(b) h∂  is  proto- differentiable at x  relative to y
∗ , and  

 

( ) ( ) ( )' '2

, ,x y x x
h D f x g∗ ∗∂ = + ∂                            (3.4)    
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Proof : 

The equivalence (3.2)   is a well-known fact in convex analysis : 

( ) ( ) ( ) ,h x f x g x x X∂ = ∂ + ∂ ∈  

To prove (a) of the proposition and (3.3), let 0
n

t ↓ and  Xξ ∈   

Let , ,h f g

t t t
ϕ ϕ ϕ  be the difference quotients of h (at x relative to y

∗ ), f  (at x
∗  

relative to ( )Df x ), g (at x  relative to x
∗ ), respectively.   

one has   

( ) ( ) ( ) ,h f g

t t t
Xϕ ξ ϕ ξ ϕ ξ ξ= + ∈  

Since  f  is 2
C , one has (see proposition  3.1 )   

For all 0ρ ≥  

( )( )"

,
, 0

n

f

t x Df x n
h fρ ϕ →        

Since g  is twice epi-differentiable at x  relative to y
∗ , then for all 0ρ ≥  one has  

( )"

,
, 0

n

g

t nx y
h gρ ϕ ∗ →  

On the other hand, since  ( )"

,
int

x x
domg φ∗ ≠  and ( )

"

,x Df x
f is evry where difinit , we can 

suppose that ( )( )" "

,,
0 int

x Df xx x
domg domf∗∈ − and we apply  [ ]5, 2.9corollaily ,  to get for 

all 0ρ ≥   :  

( )( )" "

, ,
, 0

n n

f g

t t x Df x nx y
h f gρ ϕ ϕ ∗+ + →                        (3.5)      

Hence ( )"

,
, 0

n

h

t nx y
h hρ ϕ ∗ → , with 

( ) ( ) ( ) ( )'' " "

,, ,
;

x Df xx y x x
h f g y Df x xξ ξ∗ ∗

∗ ∗= + = +            (3.6)      

 From (3.1)   and  (3.6)  , we have  (3.3) , and this proves (a). 

 

To prove (b) of the proposition and (3.4) , let 0
n

t ↓ and  Xξ ∈  Let , ,h Df g

t t t

∂ ∂Φ Γ ∆  

be the difference quotients of h∂ (at x  relative to y
∗ ), Df (at x

∗  relative to ( )Df x ), g∂

(at x  relative to x
∗ ), respectively.   

one has   

( ) ( ) ( ) ,h Df g

t t t
Xξ ξ ξ ξ∂ ∂Φ = Γ + ∆ ∈  

From (3.5) and we apply [ ]5, 3.5theorem , to get for all 0ρ ≥ and 0
n

t ↓ : 

( )( )" "

, ,
, 0

n n

f g

t t x Df x nx y
haus f gρ ϕ ϕ ∗∂ + ∂ ∂ + ∂ →  

( )( )" "

, ,
, 0

n n

f g

t t x Df x nx y
haus f gρ ∗

∂ ∂Γ + ∆ ∂ + ∂ →  

( )( )" "

, ,
, 0

n

h

t x Df x nx y
haus f gρ ∗

∂Φ ∂ + ∂ →  

From (a) of theorem 2.7 we have 

( )( ) ( ) ( ) ( )'" 2

, ,x Df x x Df x
f Df D f x∂ = =    and    ( ) ( )'"

,, x xx x
g g ∗∗∂ = ∂  

 Thus   ( ) ( )( )'2

,
, 0

n

h

t nx y
haus D f x gρ ∗

∂Φ + ∂ →  
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Hence          ( ) ( ) ( )' '2

, ,x y x x
h D f x g∗ ∗∂ = + ∂  and this proves (b) . ■ 

 

Thorem 3.3      (Moreau-Yosida approximate). 

Let X be a Hilbert space and f  be a closed proper convexe function on X . Let 

0λ > . Then the Moreau-Yosida approximate  

( ) ( ) 21
inf

2u X
f x f u x uλ λ∈

 = + − 
 

                     (3.6)   

is a 1
C  function. The infimum above is always attained at a unique point which will 

be denoted by ( ).f
J xλ The mapping fJλ is continuous in x  and the function Dfλ is 

Lipschitzian with constant 
1

λ
 
 
 

. One has  

( ) ( ) ( )1f
u J x x u f xλ λ

= ⇔ − ∈∂                     (3.7)   

( ) ( )1
Df x x uλ λ

= −                                      (3.8) 

with ,x u and ( )z Df xλ= as above , we have the following statements: 

(a)  If  f  is twice epi- differentiable at u  relative to z , then fλ  is twice epi- 

differentiable at  

      x  relative to z and  

( ) ( ) 2" " "

, ,,

1
.

2
u z u zx z e

f f fλ λ λ
= = +                  (3.9)  

   With           ,x u x x Xλ ∗ ∗ ∗= + ∈ . 

(b) Undre the same assumption as in (a), the mapping  
f

Jλ  is proto- differentiable at

x   

      relative to u  and proto-derivative is give by :  

( ) ( ) ( )
"
,

' 2"

,,

1
arg min

2

u zff

u zx u
X

J J fλ λ
η

ξ ξ η ξ
λ∈

 = = + − 
 

       (3.10)  

Proof: 

The properties of fλ , 
f

Jλ  and Dfλ  are well-known for in facts in convex analysis; 

see [ ]1, 3.24 3.56Theorems and . We wish to show (a) and  (3.9), we  write (3.6) by the 

formul 
21

.
2e

f fλ λ
= +               ( infimal convolution) 

So                  ( ) 2
.

2
f fλ

λ∗ ∗= +                                (3.11)  

By theoreme 2.5, f   is twice epi- differentiable at u  relative to z  if and only if f
∗  

is twice epi- differentiable at z  relative to u . Let  
21

.
2

g
λ

=  hence 
2

.
2

g
λ∗ =  is 2

C

and the Fréchet derivative of ( )Dg x xλ∗ ∗ ∗=  . Thus from (3.11) and proposition 3.1, ( )fλ

∗
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is twice epi- differentiable at z  relative to x   with ( )x u Dg x
∗ ∗= +   . By theorem 2.5 

again,  fλ  is twice epi- differentiable at x  relative to z  and  one has  

( ) ( )"

, ,x z z x
f fλ λ

∗ ∗  =                                       (3.12)   

From (3.11) and (3.3) , we have  

( ) ( )" 2

, ,
.

2z x z u
f fλ

λ∗ ∗= +   =  ( ) 2"

, .
2

u z
f

λ∗
+            (3.13)  

Comparing  (3.12)  with  (3.13), we conclu : 

( ) ( ) 2 2" " "

, ,,

1
. .

2 2
u z u zx z e

f f fλ

λ
λ

∗
∗ ∗    = + = +    

 

Thus   

( ) ( )2" " "

, ,,

1
.

2
u z u zx z e

f f fλ λλ
= + =   

This shows (a) and (3.9). 
 

To prove (b) of the Theorem and (3.10). Let 

( ) ( ){ } ( ), ,

1
; . 0

f
J f

t x u
J x t u X t

t
λ

λξ ξ ξ∆ = + − ∈ >  

From (3.7) , we have  ( ) ( )f
J x x Df xλ λλ= − , hence  

( ) ( ) ( ){ } ( ), ,

1
; . 0

f
J

t x u
x t Df x t x Df x X t

t
λ

λ λξ ξ λ ξ λ ξ∆ = + − + − + ∈ >  

                             = ( ) ( ) ( )1
; . 0Df x t Df x X t

t
λ λξ λ ξ ξ− + + ∈ >    

                             :=  ( ), ,

f
J

t x z
λξ ξ− ∆  

Thus For all 0ρ ≥ , 
f

Jλ  is proto- differentiable at x  relative to u  if and only if  Dfλ  

is proto- differentiable at x  relative to Df xλ  and its  protp-derivative is givn by :  

( ) ( ) ( ) ( )
'

,,
.f

x zx u
J Dfλ λξ ξ λ ξ′= −                                    (3.14)   

From (3.10), one has  

( ) ( ) 2" "

,,

1
inf ;

2
x zx z X

f f Xλ η
η η ξ ξ

λ∈

 = + − ∈ 
 

                (3.15)   

    The infimum above is attained at a unique point which will be denoted by 

( )
"
, .u zf

Jλ ξ Applying (a) to (3.15)  with the function "

,u z
f  in place of f , we gets,    

( ) ( ) ( )
"
,

"

,
.u zf

x z
J D fλ λξ ξ λ ξ= −                              (3.16)  

By theorem 2.7, Dfλ  is proto- differentiable at x  relative to Df xλ  and  

its  proto-derivative is the subdifferential (Fréchet derivative) of ( ) ( )
"

,x Df x
f

λ
λ , therefore 

:  

   ( ) ( ) ( ) ( )' "

, ,x z x z
Df D fλ λξ ξ=                              (3.17)  

Hence        
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    ( ) ( ) ( )
"
,

,
.u zf

x z
J Dfλ λξ ξ λ ξ′= −                        (3.18)  

 

        Comparing (3.17) with (3.12), one has (3.10). which completes the proof.■ 

\ 

Corollary 3.4:   Let C  be a nonempty closed convex set in a Hilbert space X . Let  

CP  be the projection map on C . Suppose the indicator function C
δ  is twice epi- 

differentiable at :
C

u P=  relative to ( ): Cv x P x= − , then CP  is proto- 

differentiable at x  relative to v  and its proto-derivative is  continuous mapping obtained 

as the solution of the following problem : 

 

( ) ( ) ( ) 2"

,

1
: ;

2
C u v

P M in im iz e X
ξ

δ η η ξ η
λ

 = + − ∈ 
 

 

Proof:  Just apply the above theorem with 1 .Cf a n dδ λ= =  

 

Proposition 3.5  

Let Y be a Banch space, :A X Y→  linear continuous mapping and :f X R→  be a 

closed proper convexe function. 

If  f  is twice epi- differentiable at Ax  relative to ( )x f Ax
∗ ∈∂  and that  

( )( )"

,
0 int

Ax x
R A domf ∗∈ −                                         (3.19)  

Then f Ao  is twice epi- differentiable at x  relative to A x
∗ ∗   and  

( ) ( ) ( )( ) ( )" " "

, , ,x A x Ax x Ax x
f A f A f Aξ ξ ξ∗ ∗ ∗ ∗= =o o              (3.20)  

Proof:  

Let ,f A f

t t
ϕ ϕo  be the difference quotients of f Ao (at x  relative to A x

∗ ∗ ), f  (at Ax  

relative to x
∗ ), respectively. Then for all  Xξ ∈  

( ) ( ) ( ) ( )( ){ }2

1
,f A

t
f A x t f A x t A x

t
ϕ ξ ξ ξ∗ ∗= + − − < >o

o o  

                 = ( ) ( ){ }2

1
,f Ax tA f Ax t x A

t
ξ ξ∗+ − − < >  

                  =  ( ) ( )( )f f

t t
A Aϕ ξ ϕ ξ= o . 

since f  is twice epi- differentiable at Ax  relative to x
∗ , then for all sequence 0

n
t ↓

and for all 0ρ ≥ , one has  

          ( )"

,
, 0

n

f

t nAx x
h fρ ϕ ∗ →                                      (3.21)  

 

By (3.19) and appling  [ ]13, 2.6corollary , we have :  

For all 0ρ ≥ , there is 1 0ρ ≥  and ( )k ρ  such that  
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                             ( ) ( )" "

, ,0 , ,f A f

t Ax x t Ax x
h f A h A f Aρ ρϕ ϕ∗ ∗≤ =o

o o o  

                                                                             ( ) ( )
1

"

,,f

t Ax x
k h fρρ ϕ ∗≤                 (3.22)  

Combining (3.22) with (3.21), we obtient  for all 0
n

t ↓  and for all 0ρ ≥  

( )"

,
lim , 0

n

f A

t Ax xn
haus f Aρ ϕ ∗

→+∞
=o

o i.e  f Ao  is twice epi- differentiable at Ax  relative to x
∗ , 

and the second-order epi-derivatve is  given by (3.20). which completes the proof.■ 

 

Conclusions and Recommendations: 
In this paper,we presented  some application of  second-order epi-derivatives of  

Frechet differentiable convex function and Moreau-Yosida approximate function that plays 

an important role in nonsmooth analysis and in statements of optimality conditions . we 

recommended to extend these results for nonconvex function in normed spaces using the 

ρ − Housdoroff distance convergence.  

 

 
 

References: 
 [1] Attouch, H. : Variational convergence for functions and operators. Pitman, London, 

1984.  

[2]  Attouch, H. ; Wets, R.J : Epigraphic analysais, analyse non linéaire. Gauthiers-Villars, 

paris, 1989, 73-100. 

 [3]  Attouch, H., R.Lucchetti and Wets, R.J: The topology of ρ-Hausdorff distance . Ann. 

Mat.Pura Appl.(4), 160, 1991, 303-320. 

[4]  Attouch, H.; Ndoutoume J.L.;and Thera, M.: Epigraphical  

        convergence of  functions and convergence of their derivatives in  

        Banach spaces. Ex. No.9, Sem. Anal convexe (Montpellier), 20 , 1990, 

        9.1-9.45. 

[5]  Azé, D.  Penot, J.: Operations on convergent families of sets and functions 

,Optimization, 21, 4,1990, 521-534. 

[6]  Beer, G.  : Conjugate convex function, and the epi-distance topology.Proc. Amer. 

Soc. 108,1991, 117-126. 

[7] Beer, G.; Lucchetti, R.:  The epi-distance topology: Continuity and stability results 

with applications to convex optimization problems. Math. Oper. Res. 17 (3), 1992, 

715-726. 

[8] Bernard, F. ; Thibault, L.; Zlateva, N. : Characterizatios of Prox-regular sets in 

       uniformly convex Banach spaces. J. Convex Anal. (3-4), 2006, 525-559. 

[9] Zowe, J. ; Ben-Tal, A.:  Necessary and sufficient conditions for a class of  

              nonsmooth minimization problems .Math.Prog., 24, 1982,70-91.    

[10 Ben-Tal, A.: Second-order theory for extremum problems, systems analysis and 

external methods.Lecture notes in economics and Math. Sciences. 1980, 336-356.  

[11] Cominetti R., Correa, R.: A generalized second-order derivatives in nonsmooth 

optimization. SIAM J. Control Optim. 28 , 1990, 789-809. 

[12] Do, C.N.   : Generalized second-order derivatives of convex functions in reflexive 

Banach spaces. Trans. Amer. Math.soc.334,1992,281-210. 

[13] Clarke,  F.  : Optimizition and nonsmooth analysis.  New-York: Wiley, 1983.  

[14] Ekeland,I. ; Temam, R.: Analyse convexe et problèmes variationnels. Paris, Dunod 




���
 ����8 �=8� � �=8��� �����C� ��=��� )35 (العدد )2013) 4   Sciences Series .Tishreen University Journal. Bas 

149 

1974. 

 [15] Mosco, U.: On the continutity of the Y0ung-Fenchel transformation. 

J.Math.Anal.Appl.35,1971, 318-335. 

[16] Levy, A.B. : second-order epi-derivatives of composite functionals. Annals of 

Operations Research. Vol. 101, n .1,2001, 267-281. 

 [17] Rockafellar, R.  : Second-Order Variational Analysis and Bedond . Conférence sur 

l’Analyse Variationnelle et l’Optimisation, Université de Montpellier II, France,   9-

12 Septembre 2009. 

[18] Rockafellar, R.  : Proto-differentability of set-valued mappings and its applications 

in optimization, Ann. Inst.H. poincaré Anal. Nonlinéaire, 6, 1989, 449-482.  

[19] Rockafellar, R.: First and second-order epi-differentability in nonlinear 

programming. Trans. Amer. Math. Soc.307 (1990), 75-108. 

 

[20] Soueycatt , M.: The Convergenc of Level Sets and the Convergence of ɛ-Solutions in 

terms of ρ − Hausdorff  distance. Mu’tah Lil-Buhuth Wad-Dirasat, 3, 2007, 111-127. 

[21] Soueycatt , M.: On second-order epi-derivativse in terms of ρ−Housdoroff  

        distance. Mu’tah Lil-Buhuth Wad-Dirasat ,vol. 26,n. 1, 2011, 23-42. 

 [22] Seerg, A.: Second–order directional derivatives in parametric optimization 

                   Problem, Math. Operations Research, 13,1988, 124-139. 
   


