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O ABSTRACT O

In this paper, a numerical method is suggested for solving general a nonlinear third-
order boundary value problem (BVP). In this method, the given nonlinear third-order BVP
will be transformed into two third-order initial value problems (I\VVPs), then spline function
approximations are applied to both two IVP for finding the Spline solution and its
derivatives up to third order of the given BVP. The study shows that the spline solution of
the BVP is existent and unique, and the convergence order of the spline method is fourth

with a local truncation error O(h”). The presented algorithm is designed for solving a

general BVP, where it is applied to some types of nonlinear third-order differential
equations. Comparisons of the results obtained by spline method with other methods show
the efficiency and highly accurate of the proposed method.
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Introduction:

Multi-point boundary value problems arise in a variety of applied mathematics and
physics. However, it is usually difficult to obtain closed-form solutions for boundary value
problems, especially for nonlinear boundary value problems. In most cases, only
approximate solutions can be expected. Some numerical methods have been developed for
obtaining approximate solutions to BVPs such as spline methods [1-3,5,7] , Pade
approximants method [4], shooting method [8], and finite difference method [9]. We
present, a numerical method structured on spline function approximations for solving a
general third-order boundary value problem of the form

u"(x)=f(x,u,Uu’,U", as<x<b (1.1)
along with the following three cases of boundary conditions

Case | : U(a)=ea, U'(a)=4,U(b) =Db,, (1.2a)

Case Il : U@=«a, U'(a)=4,U'(b)=b,, (1.2b)
Caselll: U(a)=ea, U'(a)=4,U"(b)=h,, (1.2c)

where f is a continuous function on [a, b] and the parameters «, # and b;, i =0,1,2

are finite real arbitrary constants.

In approximation theory, spline functions occupy an important position having a
number of applications, especially in the numerical solutions of boundary-value problems
(BVPs). Third-order BVPs are solved by Caglar et al. [1] using fourth-degree B-splines,
have a first-order accuracy. Khan and Aziz [2,3] have used a fourth-order method based on
quintic splines for solving the third-order linear and nonlinear BVPs of the form
U"(x) = f(x,U), subject to the boundary conditions the case I , also the same problem is

solved in [5] by using a second-order method based on quartic non-polynomial spline
space. Tirmizi et al. [4] have solved third-order BVP of the form U"(x) =f(x,U"), this

method arises from a four-point recurrence relation involving exponential terms, these
being replaced by Padé approximants. An existence and location result for the third-order
separated boundary value problem of the form (1.1) with one-sided Nagumo condition
have presented by Grossinho et al. in [6]. Mahmoud [7] has presented quintic spline
collocation methods for solving two types of general linear third-order BVPs, those
methods are third-order convergent.

1. Importance and Aim of This Work

As we know, it is difficult to give the analytical solutions of problems (1.1)-

(1.2c), for that reason, the numerical solutions are very important. The purpose of this
work is to provide a numerical treatment for finding the approximate spline solution and its
derivatives of the problem at every point of the range of integration. Advantages of the
proposed method is extremely simple, quite easy to use, and gives a very good accuracy,
and has a computational cost that is cost-effective, because this technique is leaded only to
solve a algebraic system of third order, while other numerical methods are leaded to solve
algebraic systems of order N, where N the number of grid points.

2. Methodology

Theoretical part: The suggested method in this study is transformed the general
nonlinear third-order BVP into third-order initial value problems, after that spline function
approximations are directly applied to third-order initial value problems without their
reducing into a system of first-order I\VVPs in ordinary differential equations. Thus, the
approximate Spline solution and its derivatives of the nonlinear third-order BVP attain the
same order of accuracy for nonlinear third-order 1VPs. The proposed spline method when
applied to the problem of form (1.1)-(1.2c) is convergent.
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Practical part: Numerical results for various problems are compared with those
obtained by others. The comparisons show the accuracy, robustness and efficiency of the
presented methodology. The computations are accomplished by using Mathematica
Version 5 and Turbo Pascal under Windows (TPW 1.5) in double precision. In
consequence, all the problems of form (1.1)-(1.2c) are solvable by using the proposed
spline method.

3. Reduction of the BVP into two IVPs

In this section, the nonlinear third-order BVP (1.1) with three cases of the boundary
conditions (1.2a)-(1.2c) is reduced into two nonlinear third-order 1\VVPs. This technique is
similar to the linear case of shooting method for the third-order BVVPs[7], except that the
solution to a nonlinear problem cannot be simply expressed as a linear combination of the
solutions to two IVPs. Instead, it needs to use the solutions to a sequence of initial-value
problems of the form:

u”"(x)=f(x,U,u’,U" , a<x<b (1.3)
subject to the initial conditions
U@ =a, U'(a)=p4,U"(a) =t, (1.4)

involving a unknown parameter t , to approximate the solution to BVP (1.1) with one
of the cases of boundary conditions (1.2a)-(1.2c).
This is performed by choosing the parameter t =t; in a manner to ensure that

kim U, t,)=U(b)=b, (1.5a)

is satisfied with boundary conditions, case I : U(a) =a, U'(a) = 5,U(b) =b,,
and that

Ik_im U'(b,t)=U"'(b)=Db, (1.5b)

is satisfied with boundary conditions, case Il : U(a)=«, U'(a) =4, U'(b) =D,
and so

kim U"(b, t,)=U"(b) =h, (1.5¢)

is satisfied with boundary conditions, case Il : U(a)=«, U'(a)=4,U"(b) =b,.

Here, U(x,t,) denotes the solution of the IVP (1.3)-(1.4) with t=t,, and U(x)
denotes the solution of the BVP (1.1)-(1.2). The evaluation starts with a parameter t, that
determines the initial elevation at which the object is fired from the point (a,«) and along
the curve described by the solution to the initial-value problem:

U”"(x)=f(x,U,Uu’U"), a<x<b, U@=«a,U'(@d=pU"@@)=t,. (1.6)

If U(b,t,) is not sufficiently close to b,, we can attempt to correct our
approximation by choosing another elevation t, and so on, until U(b,t,) is sufficiently
close to b, .

If U(x,t) indicates the solution to the IVP (1.3)-(1.4), the problem associated with
determining t so that the following equations are satisfied, respectively:

U(,t)-b, =0, (1.7a)
with boundary conditions, case I,

U'(b,t)—-b, =0, (1.7b)
with boundary conditions, case I,

U’(b,t)—b,=0 , (1.7¢)

196



Tishreen University Journal. Bas. Sciences Series 2012 (1) 2xall (34) alaall Zuulu) aglall @ (00350 Gaals dlas

with boundary conditions, case IlI.

Since (1.7a)-(1.7¢) are nonlinear equations, Newton’s iteration method will be used

to obtain the sequences {t } of the approximate solutions, when the initial value t, is
given, the iteration solutions have the following forms, respectively

t, = M k=1,2,... (1.8a)
EU(b, te1)

dt
—Uc;r(b’t“)_bz, k=1,2,... (1.8c)
aU "(b, t, ;)

tk—l -

t, =

t, =

tk—l -

Here, the knowledge of iU(b t..), %U’(b,tkl) and %U”(b,tkl) are required.
Still this presents a difficulty, since explicit representations for U(b,t), U'(b,t) and

U"(b,t) are not known. Suppose that the IVP (1.3)-(1.4) is rewritten, emphasizing that the
solution depends on both x and t :

U"(x,t) = F[x,U (x,1),U"(x,1),U"(x,t)], .
{U(a,t)za, U'(a,t) =8, U"(a,t) =t (1.9)

For this reason, we take the partial derivative of problem (1.9) with respect to t . This
implies that:
0

m _i ' "
au (x,t) = at[X’U(X’t)’U (x,1),U"(x,1)]

a<x<b

N x U ()0 (0,0 (6 D] 22 (x, 1) +
OX t
ﬂ[x,u (X, 1),U"(x,1),U ”(x,t)]a—U(x,t) N

—[x U (x,1),U"(x,1),U"(x, t)]ﬂ(x t)+

" ou”
20 ,,[X U (x,t),U’(x,t),U"(x, t)]—(x t)

Since x and t are independent, then we obtam
0

EU”'(x,t)=ﬂ[X,U(X,t),U'(X’t)’U"(X’t)]Q(X’tH

, ou’
8U'[X U (X, 1),U°(x,1),U"(x, t)]

(x t)+ (1.10)
W[X LU (x,1),U'(x,1),U"(x, t)]i(x t), a<x<b
The initial conditions of problem (1.9) are satlsfled as follow:
EU (a,t) =0, gu '(a,t)=0 and 0 U "(a,t) =1. (1.11)
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By using W (x,t) to denote %U (x,t) and assume that the order of differentiation of x
and t can be reversed equations (1.10)- (1 11) transform to the initial value problem:
W"’_—(xU U U"W(x, t)+ (xU U Unw'(x, t)+—(xU U U"W"(xt),

W(a,t)—O, W'(a,t) =0, W”(a,t)—l , asxgb, (1.12)

Now, it is required numerical method for solving the both IVPs (1.9) and (1.12), and then
the iteration relations (1.8a)-(1.8c) will be known, and can rewrite them as follow:

tk = l_U(b’ tk_l)_bo ' k:1)27 (113&)
B W(b,t, )
U'(b: tk—l)_bl
t =t — ———, k=1,2,... 1.13b
W) (1130

t, =t —
C Wbty
In practice, these initial-value problems are not likely to be solved exactly. In the

next section, spline function approximations can be applied to obtain the numerical
solutions of the both nonlinear third- IVPs (1.9) and (1.12).

Applying Spline Approximations for Non-linear 1VPs:
Consider the uniform grid partition A:={a=x, <X, <---<X, <X, <---<X, =b} of

the interval [a, b]with mesh size h=(b—a)/Nand grid points x, =a+nh, n=01...,N.
The Spline function approximation S(x) to the function U (x,t) at the grid points is given
by the piecewise expression:
So(X), if xe[X, %],
S(X)=2S,(x), if xe[X,,X,,], n=1..,N-2 (2.1)
Sna(X), i xelxy 1, X1,
where

5,00=3 ek s > b, xely, x,.0, n=0. 2

By applying the Spline approximation (2.2) and its derivatives with respect to x,
S, (x), S, (x), S/(x)on three collocation points Xniz; =% +2; h, (j=1,2,3), into the third-

order IVP (1.9), in each subinterval I, =[x, X, ,], n=0(1)N-1, we have

Sr:”(Xij ) = f [Xn+Zj ’ Sn (Xn+ZJ— )’Sr,1 (XnJrZj )’ Sr:'(XnJij )]’ j:1’213 (233.)
with the initial conditions
Se(@)=a, S5(@) =4, S;(a=t, (2.3b)

where S,(a) =U(a,t) =, Sj(a) =U'(a,t) = g and S;j(a) =U"(a,t) =t, the other
coefficient Sy(a) =U"(a,t) is determined by the derivation of equation (1.9), where

(h Z) b = (hz) .
n+Z ) z () ;Tcn,i—?}’ Xn+Zj E[Xn’Xn+1]v J:11213a (24)

n=0,.,N-1
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The first three coefficients C ., C, ,, C, ;are computed from the nonlinear system
(2.3a) by using the initial conditions (2.3b) for n=0, or from the previous step if n>1.
Similarly, it is required to find the approximate spline solution to the initial-
value problem (1.12), to do so, we take the following spline approximation:

S (x=%) iy &(x=x) =
SW‘n(X)=;%S®?n+;%CM_3,XE[Xn,Xn+l], n=0,.,N-1,
1=l . I= H

(2.5)
by applying the approximation (2.5) into (1.12) to be satisfied at collocation points

Xn+zj =X, tZ; h, j=1(1)3, yields:
of o o,
SW,n (Xn+Zj ) + aS' SW'” (Xn+zj ) + 68” SW,n (Xn+Zj ) (26&)

U,n U,n U,n

S\;\’I’,n (XnJrZj ) =

with the initial values:

SW,o (a) = S\;\/,0 (a) =0, S\;\,/,o (a) =1, (Z-Gb)
where
s (hz,) ., <& (hz) = _
SW,n (Xn+Zj ) = IZ(;I—:SV(V)n +;i—!JCn,i—3’ Xn+ZJ- € [XnaXn+1]1 J :1i2!3a (27)
n=0,..N-1
and
0<z,<z,<2,=1 (2.8)

Again, the first three coefficients En’l,énvz,Cnvs are computed from the nonlinear

system (2.6a) by using the initial conditions (2.6b) for n=0, or from the previous step if

n>1.
By finding the numerical spline solutions of (2.3a)-(2.3b) and (2.6a)-(2.3b), and
substituting Sy _, (Xy,t1), Sw.na (X, tey) and their derivatives into the iteration relations

(1.13a)-(1.13c), we have

t, =t,_, — S-a (X bey) =By , k=1,2,... (2.9a)
SW,N—l(XN ’tk—l)

t, =t — Sle(XN bey) =B , k=12,... (2.9b)
SW,N—l(XN ’tk—l)
S/ t,,)—b

T ELGTTLS) el S (2.9¢)

SV'\'/,N—l(XNJ:k—l) ,

1. A unique Solution
As previous, the numerical solution of the nonlinear third-order BVP (1.1) will

transform to the two solutions of initial value problems of the form:
U”(x)=f(x,U(x),U’'(x),U"(x)), xe[a,b] (2.10a)
U@=a, U@=pandU"(@)=t . (2.10b)
Suppose that f :[a, b]xC[a, b]xC'[a, b]xC?[a, b] > R is an enough smooth
function satisfying the following Lipschitz condition in respect to the last three arguments:
| f(X, Y1, Yo y3) - f(X,Ul,Uz,US) |S I—(l Y1 —U; | +| Y, _uzl +| Y3 _ual)’ (2 11)

vV (% Y1, Y2, Y3), (X, Up, Uy, U5) €@, b]x R®
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where the constant L is called a Lipschitz constant for f.

These conditions assure the existence of a unique solution U(x) of problem (2.10).

By applying the Spline approximations (2.2) and its derivatives into the problem
(2.10), using three collocation points Xniz; = %o 2 h, (j=1,2,3), we obtain the system

hz)? hz.)®
57+ (hz,)C,, + Z;) C,,+ ;') C..=
P02, 5060205 00z )8 (02 )) o 1 =023 (2.122)
n=0,.,N -1,

So(@)=«a, Sj(a)=pand Sj(a) =t (2.12b)
We rewrite (2.12a) in the matrices formula:
AC, =S, +F, (2.13)
where

. h Zp Zy]

nh o 5h oh C., ~s® fruz,

_ Zy 4 ol | & ®
A=|z,h 72!h ﬁh , C, hC., | S,=|-S7 | F, = fmz2 ,
1 1 h’C, ~S® f.
_ h ﬁh ﬁhj 3 n+1

fn+Zj = f (Xn+ZJ- ’S(Xn+2j )! SI(Xn+Zj )’ S”(Xn+2j )) ' j:1’2’3'

Theorem: Assume that the function f e C*([a,b] xR xR xR) satisfies Lipschitz
condition, and if
1152

< -
139441L

then the spline approximation solution S(x) of the problem (2.10) is existent and
unique for z, =1/4, z, =3/4,z, =1, where L is a Lipschitz constant for f.

Proof. From the relation (2.13), it suffices to prove that the vector C_can be

uniguely determined for arbitrary given S,. Let C*,C2? e R%, then from the relation (2.13),
we can write

Ci=A'S,+A'F'and C:=A"S, +A'F’
Thus C'and C? can be written in the form

6n1 =6n (Cr]]-,l’Cr]l-,Z’Cr];B’ h) and c_:n2 :6n (Cril’criZ’CriB’ h)
Applying || .||, , Lipschitz condition and using Mathematica, we get
1Q.(C)=QCH =N (ATS, + ATF) = (ATS, + AR |

=l AT LR -Fl s

(2.14)
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169

13 23
Al “hP+ 2R+ —hY|C —C2 |+
I ||{|-1(16 ” 2072 )IChi—Chy
23 16 317
L(Zh?+ = h*+ > p4y|ct, —C2, |+
2(96 3072 30720 )Gz =Coc
169 317 2413
L h? + h® + h*)|C!.-C?
3(3072 30720 1474560 ) Coa=Coall
13 23 169
<IATLL(h? + 200 4 22 he,
16 96 3072

{| Ci,l _Cr12,1 |+| Cr11,2 _Criz |+| Cr11,3 _an,a I}

328, ,3041h°
S(E)( 2072 LG, -G I+IG, -G | +IG s -G}
139441
<L hLIG -G 1+IG .-G | +1G s -G},
1152
where
L=max (L, L,,L;), H, =max (H,, H,,H,), forall h<]0,1[, and
Ho=(Cht+ 20 22 pay 1, = (Bhe e 2 p3 3 ey
16 96 3072 9% 3072 30720
H3:(196 he o 317 o 2413 h),
3072 30720 1474560
3041 1 328
H. <=—=h?, forall hel0,1, and |A*|==(=) .
- 10, A~ h(3)
139441

<1 which

Thus, the function Q, defines a contraction mapping if hL 1152

satisfies (2.14). Hence there exists a unique C, that satisfies C, =Q, (C,..C,,.C. 5N

which may be found by iterations, C** =Q_(C.”,h), p=0,1,2.... .
The proof of the Theorem is now complete.

Convergence Analysis:

We assume that U(x) € C'[a,b], the unique solution of the third-order BVP (1.1)
and Sy(x) be a spline approximation to U(x), also T =(7,) is a 3-dimensional column
vector. Here, the vector 7, is the local truncation error.

Applying the Spline approximation S,(x) on three collocation points
Xniz; = X +Z h, (=1,2,3), and setting U(xn+zj);Sn(xn+zj), and
U™ (x,)=U{"=s™(x,), (m=0,...,3), for z,=1/4, z, =3/4,z, =1, the local truncation
error is formulated by:

T =MC,+¥,, n=0,...N (3.1)

where
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J}AM
B Un+%u,’]+géu"+3®um U(x,+1h)
¥, =| U, +3u  ur ur-ux, + 30 |,
Un+hur’1+h7ug+%ug—U(xn+h)
& DY (416)*: C,,
=& @ @ | Co=|hC,,
h ht h4 h’C, ,
] ol ol n.
On the other hand, from the system (2.13), we get
C, =AU +A'F, (3.2)
where
8 _8 1]
, h 3h h
3h - 112 80 _32
D A - A L =| —— _— — ==
et(A) 2048¢0’ 3h  3h 3h
64 64 32
L h h h |
_U r23) U r/!(xn+21)
U,=|-U? | F=|U"(Xyz,) |-
-U rga) u W(Xn+1)

Using Taylor’s expansions for the functions U(m)(x),m =0,...,3 about x,, in the

relation (3.2) and substituting it into (3.1), the local truncation error at the nth step is
yielded, as follows:

103 U(7)(X ).h7_

165150720
= 113 e v _ 81 (7) 7 |_ 7 _
—M(A Un+A Fn)+\Pn = mu (Xn).h =O(h ), n—O,l,..N (33)
1 (7 7
F25560Y  (Xn)-N

where
Ux) =y &%) IX) U (x,)+O(N"), X € [X,, Xyl

i=0 -
Note from the relation (3.3) that the proposed Spline method is exact for expansions
6

of the solution of degree <6, hence, global truncation erroris || T || .= N.O(h") =0(h®).

Consequently, we have obtained the following: let U € C'[a,b] be Lipschitz
continuous, then the spline approximation S(x) converges to the solution U(x) of the

nonlinear third-order BVP as h - 0 for z,=1/4, z, =3/4, z; =1 and
Lirrgs(m)(e):u(m)(e), m=0,..,3, e=ab.
Furthermore, the convergence order is furth, i.e., we have
U™ (x)-S™(x)|<C,h"™ m=0,..,3 .

(3.4)

(3.5)
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B Algorithm: The Spline Method for solving the nonlinear third-order BVP (1.1)
We use the following notations elfa=« , beta=4 .
INPUTS:
Input (a,b, elfa, beta, tx, by or bl else b2): the boundary conditions and constants.
Input (C4,C,,C3), the initial approximation vector C = (C,,C,,C,)".

Input ((C,,C,,C,)), the initial approximation vector C =(C,,C,,C,)".
Input (N), number of subintervals N.
Input (M), maximum number of iterations M .
Tolerance Tol=0.1E-8; the parameters z1=1/4; z2= 3/4; z3=1,
Step1l Set h=(b-a)/(N);
ki=1;
Step 2 while (ki <= M) do {0} Steps 3-22.
Step 3
Begin {The initial conditions}
SO=elfa;
Sl=beta;
S2=tk;
S3=f(a,s0, s, s2);
Sw0=0;
Sw1=0;
Sw2=1;
Sw3=S"w(a);
Step4 forn:=1to N do {1} steps 5-19.
{Spline solution (2.3a) for the nonlinear IVP (1.9)}

We set Fn (C) = Sr:”(XnJij ) —f [Xn+Zj ’ Sn (Xn+Zj )’Sr: (Xn+Zj )’ Sr’:(XnJij )] =0.

Step5 k=1,
Step 6 while k <= M do {1} steps 7-11
Step 7 Calculate F, (C) and J, (C),
where J,(C)ij =0F,;(C)/dC; for 1<i, j<3.

Step 8 Solve the 3x3linear system J,(C)Y =—F,(C) .

Step 9 Set C=C+Y.
Step 10 if ||Y]| < Tol then {substituting (2.4) and its derivations}
spl[n]=Sn(C);
spl1[n]=S"n(C);
spl2[n]=S""n(C);
spl3[n]=S"""n(C);
Step 11 Set k:=1+k;

{ end while 1}
{Spline solution (2.6a) for the nonlinear IVP (1.12)}
We put
= =~ of of of
F (C)=S (X ——S, .(x ——S, . (x ———S/ (X =0
n( ) W,n( n+Zj) aSU’n W,n( n+Zj) aSL,Jn W,n( n+Zj) aS[,J,n W,n( n+Zj)
Step 12 k=1,

steps 13 While (k<=M) do {2} steps 14-18.
Step 14 Calculate F,(C) and Jw, (C),
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where Jw, (C), ; =aSw,;(C)/aC; for 1<i, j<3.
Step 15 Solve the 3x3linear system Jw, (C)Y =—F, (C).

Step16 Set C=C+Y .
Step 17 if ||\7 ||< Tol then {substituting (2.7) and its derivations}
x:=z[i]*h;
Swin]=Swq(C);
Swi[n]=Sw( C );
Sw2[n]=Sw ( C );
Sw3[n]=Sw ( C );
Step 18 Set k:=k+1,

{ end while 2}
Step 19 Set {Renewing the initial conditions}
S0=spl[n]; S1=spli[n];

S2=spl2[n];  S3=spl3[n];
Sw0=Sw[n]; Swl1=Swi[n];
Sw2=Sw2[n]; Sw3=Sw3|[n];
{ end for 1}
Step 20 if abs(spl[l,3]-b0)<=tol then {else (spl1[l,3]-b1) or (spl2[l,3]-b2) }
Step 21 forn:=1 to N do {2}
Set x=a+z[i]*h+(n-1)*h;
Output(x, Spl[n], Spl1[n], Spl2[n], SpI3[n], tk, Ki);

{ end for 2}
Output (‘Procedure is complete. *);
STOP.
Step 22  tk:=tk-(spl[N,3]-b0)/SwW[N,3]; {the iterations (2.9b)-(2.9¢) are used for the
Ki=ki+1; other boundary conditions ((1.2b)-(1.2c)) }
{ end while 0 &&& Procedure completed unsuccessfully}

END.

Results and Discussion:

In this section, four numerical examples are given to demonstrate the order of
convergence and the accuracy of the present spline method. Numerical results of examples
are obtained from computer programs designed by TPW 1.5 in double precision, and
figures are plotted by Mathematica 5. The local errors and the rate of convergence are
computed for presented spline method.

Here, the notations E) =SN-S2N| EN 4S/N—-S2N |, E/N SN —Sp2N |,
n=1,...,N, are used where E indicates the nodal difference error, and S is the spline
approximation of the exact solution U(x,). Moreover, the experimental nodal rate of

convergence is given by Rate = Log, (EN /E*").

Problem 4.1 Consider the following nonlinear third-order BVP [1-3,5]
ur=—2e Vi % oc<x<,
@+x)

U(0)=0, U(L)=Ln(2), U'(0)=L1.
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The analytical solution is U(x) = Ln(1 + x).
This problem will be reduced into the following two initial value problems:

-3U(x,t) N 4

U"(x,t)=-2e — ,0<x<1],

1+ x)
U(.t)=0,U’(0,t)=1,U"(0,t) =t .
W™ (x,t) = %W(x,t) —6e VD Y hwxt) , 0<x<1,
W (0,t)=0,W'(0,t) =0, W"(0,t) =1.

Corresponding to the boundary conditions, case I, it is required that the iteration
relation (2.9a) is satisfied, when t=t, . The best maximum error of the non-polynomial
spline method[5] is 0.200E-7 for h=1/256. Tablel shows the absolute errors of
problem4.1, in addition to comparisons of the spline method with other methods [1-3]. In
Table 2, Observed maximum errors of the Problem 4.1 for step size h different are
compared with other methods[5,11] . Fig.1 plots the Spline approximation solution with
the exact solution of problem 4.1, for h=0.1. In Fig. 2, the absolute error in the Spline
solution of prblem4.1 is depicted for h=0.1.

08 1 w—The exact solution

0.6 9 /

04 4 /
03 - /
2%

o]

0 0.2 0.4 0.6 0.8

Fig.1. the exact solution with the Spline approximation solution
of problem 4.1, for h=0.1.
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Fig. 2. The absolute error in prblem4.1 by the Spline method, for h=0.1.

Problem 4.2 Consider the non-linear BVP [10]
U”+UX)U"(X)-[U'(X)]? +1=0, 0<x <1,
U(0)=0, U'(0)=0, U(1)=0.
Here, it is wanted to solve the two initial value problems
U"(x,t) =-U(XtHU"(x,t) +[U'(x,1)]* =1 ,0< x <1,
{U (0,t)=0,U(0,t)=0,U"(0,t) =t .
W"(x,t) =-U" (X, )W (x,t) +2U" (X,t)W'(x,t)-U (x,t)W"(x,t) , 0 < x <1,
{W(O,t) =0,W’'(0,t)=0,W'(0,t) =1.

Also, it is required that the iteration relation (2.9a) is satisfied.
Table 3 shows the spline solution and local errors at the nth step of problem 4.2 by

present spline method, for N=10. By solving the problem 4.2 for N=10, 20, 40, the rate of
convergence for the spline method is illustrated in Table 4. The Spline solution S; and its
derivation S’ of problem 4.2, for h=0.05, are plotted in Fig.3. Also in Fig.4, the second

derivation of Spline solution S” of problem 4.2, for h=0.05 .
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0.05 4

D.01 4

<

D03 4

-0~ S

—0—5'i 0.07 4

-0.11 9

0.15 T T T
0.00 0.20 0.40 0.60 0.80 1.00

Fig.3. The Spline solution S; and its derivation Si' of problem 4.2, for h=0.05 .

0.3
0.2 4

0.1 4

0.1 4
0.2 4
-0.3 4
0.4 4
-0.5 4

-0.6 4

0.7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig.4. The second derivation of Spline solution Si” of problem 4.2, for h=0.05 .

Problem 4.3 Consider the non-linear BVP [9]
—eU"-2U"(x)+4U'(X)-[U(X)]) = f(x), 0<x <1,
u(0)=1, U'(0)=1, U'(1)=1.

where
2
20-e“'%) 2 4(l—e7'%) 21-e“%)" 4
The solution of this problem is equivalent to solve the two initial value problems:
—U"(x,t)=2U"(x,t) —4U’(x,t) +[U (x,t)]* + f(x), 0<x<1,
{U O,t)=1,U’'(0,t)=1,U"(0,t) =t.
{— AW "(x,t) = 2W"(x,t) —4W'(x,1)+2U (x,t)W(x,t) , 0< x <1,

f(x)=1+ 4{1+

W(0,t)=0,W’'(0,t)=0,W"(0,t)=1.
Moreover, it is required to implement the iteration relation (2.9b), since it fits the
boundary conditions, case I, it is required that the iteration relation:

_Sl'\lfl(XN’tkfl)_l k:1 2 .
SV'V,Nfl(XN ’tkfl)

t =t
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Table 5 displays the spline solution and local errors at the nth step of the Spline
solution and its derivatives up to third order of the problem 4.3, for b=1, N=10, ¢ =1.

The best maximum error of the computational method [9] is 1.636318E-05.

Problem 4.4. Consider the following singular nonlinear problem[12]

U"(x) + éu '(x) ~U"(x)U (X) ~1672U 2(X) = (87” — 647°)cos(47x)

U()=0, U'(0)=4z, U"(0)=0

Table 6 summarizes the spline solution and its derivatives as well as absolute errors
of problem4.4 by presented spline method for N=40, h=0.0225. In Fig.5 is plotted the

Spline solution S; and first derivation of s’ of problem 4.4, for N=30.

—o—The Spline Sol.

— 5|

(= B ~ I - I |

B NON S OD

0.6 4
08 4

1

12 4

Fig.5: The Spline solution S; and its derivation Si' of problem 4.4, for N=30, respectively.

Table 1: Comparisons the absolute errors

O. of Problem 4.1 with other methods

. Quintic Quintic The Presented Spline Method
B,-spline spline[2] spline[3]

Xi [1] &, 5 5 The Spline 5.

i i Solution S !
0.00 | 0.00000000 | 0.0000000 | 0.0000000 | 000000000000000 | 0.000000000000
0.10 | 0.00985988 | 5.5798E-6 | 0.0000056 | 0.095310180257 | 4.530420483E-10
0.20 | 0.0134925 | 9.44321E-6 | 0.0000095 | 0.182321557356 | 5.616129783E-10
0.30 | 0.0319635 | 3.16447E-6 | 0.0000032 | 0.262364264983 | 5.152287485E-10
0.40 | 0.0456218 | 1.75366E-5 | 0.0000175 | 0.336472237027 | 4.060893843E-10
0.50 | 0.0545501 | 2.90919E-5 | 0.0000292 | 0.405465108389 | 2.810338628E-10
0.60 | 0.0588473 | 2.88292E-5 | 0.0000288 | 0.470003629411 | 1.650732883E-10
0.70 | 0.0585917 | 1.31489E-5 | 0.0000132 | 0.530628251135 | 7.275957614E-11
0.80 | 0.0538606 | 5.0649E-6 | 0.0000051 | 0.587786664913 | 1.091393642E-11
0.90 | 0.0447198 | 8.61724E-8 | 0.0000000 | 0.641853886158 | 1.455191522E-11
1.00 | 6.68056E-6 | 8.05599E-8 | 0.0000000 | 0.693147180559 | 9.094947017E-13
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Table 2: Observed maximum errors of the Problem 4.1 for step size h different.

h Usmani’s method | Quartic non-polynomial The Present Spline
[11] spline method [5] Method

1/8 0.180 E-03 0.534 E-04 0.2332625 E-08

1/16 0.444 E-04 0.971 E-05 0.2864908 E-10

1/32 0.120 E-04 0.199 E-05 0.18189894 E-11

1/64 0.277 E-05 0. 374 E-06 0.45474735 E-12

1/128 0.680 E-06 0. 820 E-07 0.22737367 E-12

Table 3: The spline solution and local errors of problem4.2
by presented spline method when, N=10, h=0.1
Xn S, Er:“ Er’]N E, N Er']”N

0.10 0.00149606947 5.76539E-09 7.8803E-10 5.74810E-09 2.47091E-11
0.20 0.00531781873 1.19943E-08 9.1163E-10 5.0805E-09 2.47082E-11
0.30 0.01046620293 1.80013E-09 3.55389E-10 | 4.41608E-08 4.94467E-11
0.40 0.01594328099 2.31002E-09 8.34378E-10 | 3.75784E-08 4.97091E-11
0.50 0.02075232466 2.66541E-09 2.64222E-09 3.1027E-09 3.69507E-11
0.60 0.02389786115 2.80448E-09 5.06813E-09 | 2.45991E-09 2.47091E-12
0.70 0.02438584791 2.67313E-09 8.09279E09 1.81712E-09 7.41593E-11
0.80 0.02122417681 2.19414E-09 1.17278E-08 | 1.19906E-09 1.97783E-10
0.90 0.01342370403 1.32497E-09 1.5977E-09 5.68608E-09 4.20275E-10
1.00 0.00000000000 5.56236E-14 2.09525E-09 | 2.47375E-09 6.92239E-10

Table 4: The rate of convergence for presented spline method, with N=10.

no| BN SN s | EMN sV s Rate of
convergence
1 5.76539E-09 1.35207E-10 5.41418
2 1.19943E-08 3.28340E-10 5.19102
3 1.80013E-09 5.40936E-11 5.05650
4 2.31002E-09 7.72546E-11 490214
5 2.66541E-09 1.00441E-10 4.72994
6 2.80448E-09 1.15880E-10 4.59703
7 2.67313E-09 1.15881E-10 452782
8 2.19414E-09 9.27205E-11 4.56463
9 1.32497E-09 5.40936E-11 4.61436
10 8.56236E-14 2.94445E-15 4.86194
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Table 5: The spline solution and local errors of problem4.3
by presented spline method for N=10, h=0.1, ¢ =1.

Xn S, EnN E;N E,’{N E;”N

0.10 | 1.10291561144 | 7.41820 E-11 | 2.96646 E-10 | 7.53051 E-08 | 1.64208 E-08

0.20 | 1.21033159287 | 1.13733 E-10 | 4.45010 E-10 | 7.00269 E-08 | 1.60499 E-08

0.30 | 1.32052581935 | 1.28547 E-10 | 4.94456 E-10 | 6.34815E-08 | 1.50017 E-08

0.40 | 1.43208833425 | 1.28547 E-10 | 8.84561 E-10 | 5.65422 E-07 | 1.36024 E-07

0.50 | 1.54386476268 | 1.23600 E-10 | 4.35116 E-09 | 4.97481 E-07 | 1.20622 E-07

0.60 | 1.65490998244 | 1.13733 E-10 | 1.60961 E-09 | 4.34129 E-08 | 1.05071 E-07

0.70 | 1.76445019289 | 1.08785 E-10 | 9.76911 E-10 | 3.77082 E-08 | 9.03612 E-08

0.80 | 1.87185185968 | 1.03839 E-10 | 6.87887 E-10 | 3.26709 E-08 | 7.69368 E-08

0.90 | 1.97659628872 | 1.08786 E-10 | 4.88911 E-10 | 2.83198 E-08 | 6.47857 E-08

1.00 |2.078258809212| 1.02324 E-10 | 3.23602 E-10 | 2.45867 E-08 | 5.44887 E-08

Table 6: The spline solution, its derivatives and absolute errors of problem4.4
by presented spline method when, N=40, h=0.0225.
Xn S, S! S” 5, S

0.00 | 0.00000000000 |12.56637061436 | 0.00000000000 | 0.00000000000 | 0.00000000000
0.10 | 0.95105652158 | 3.88322222615 | -150.184823269 | 5.28286405E-09 | 1.48700326E-07
0.20 | 0.58778528245 |-10.16640706019| -92.8193251932 | 3.01624858E-08 | 3.24439011E-07
0.30 | -0.58778518799 |-10.16640709067| 92.8193253494 | 6.43058487E-08 | 2.93959883E-07
0.40 | -0.95105643354 | 3.88322212521 |150.1848222032 | 8.27582973E-08 | 4.77541016E-08
0.50 | 0.00000007415 |12.56637043785 | -0.00000172981 | 7.41476726E-08 | 1.76510399E-07
0.60 | 0.95105656997 | 3.88322189917 | -150.184824362 | 5.36771205E-08 | 1.78282963E-07
0.70 | 0.58778529418 |-10.16640745392| -92.8193255329 | 4.18858344E-08 | 6.92935496E-08
0.80 | -0.58778521675 |-10.16640750109| 92.8193253648 | 3.55447632E-08 | 1.16461012E-07
0.90 | -0.95105650214 | 3.88322175290 | 150.1848230498 | 1.41576724E-08 | 3.24555123E-07
1.00 | -0.00000002590 |12.56637019320 | -0.00000019857 | 2.58980856E-08 | 4.21163376E-07
Conclusion:

The presented algorithm is experimented for solving some problems in nonlinear

third-order differential equations. This presented spline method enables us to approximate
the solution as well as its derivative at every point of the range of integration, while other
methods do not produce. Tables 1-6 and Figures 1-5 are illustrated the applicability,
efficiency and very good accuracy of the spline method. Comparisons of our results with
the results obtained [1-3, 5, 9, 11] show that the presented spline method is better than
other methods. Table4 shows the rate of convergence for the spline method when applied
to the problem4.2 is at least four, and this is agreed with theoretical study. In consequence,
all the problems of form (1.1)-(1.2c) is solvable successfully by using the proposed
method.
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