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O ABSTRACT O

In this paper, a class of quintic C>- spline collocation methods when applied to
differential-algebraic systems with index greater than or equal one is presented.

These methods do not in general attain the same order of accuracy for higher index
differential-algebraic systems as they do for index-1 systems. We prove that the proposed
methods if applied to index-1 systems are stable and consistent of order five, while they are
stable and consistent of order four for index greater than one. Necessary and sufficient
conditions on parameters c,,c,<]0,1[ of the methods are derived to ensure that the
methods applied to index-v systems are strictly stable. By giving four numerical examples
and comparing with other methods, the applicability and efficiency of the methods are
shown.
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Introduction:

Differential algebraic equations (DAES) arise in many instances when using
mathematical modeling techniques for describing phenomena in science, engineering,
economics, etc. In the last three decades, the use of differential algebraic equations has
become standard modeling practice in many applications, such as constrained mechanics
and chemical process simulations. In most cases, the model is too complex to allow one to
find an exact solution or even an approximate solution by hand: an efficient, reliable
computer simulation is required. It is well known that DAESs can be difficult to solve when
they have a higher index, i.e., an index greater than one (cf. [3]). Higher-index DAEs are ill
posed in a certain sense, especially when the index is greater than two [1], and a
straightforward discretization generally does not work well. Some numerical methods have
been developed, using Runge-Kutta, BDF and regularization methods [2,3,4,9,11,14].
Differential transform method introduced by Liu in [10], who solved linear problems for
index only two and three. A multi-resolution collocation method with specially designed
spline wavelet is presented to numerically solve a system of nonlinear differential-
algebraic equations of 1-index in [5]. In [7], Ayaz gave two numerical examples to
illustrate the efficiency of the method, but the two examples are all index-1 DAEs. Linear
differential-algebraic equations with properly stated leading term: Regular points by Marz
and Riaza in [13].

1. Importance and Aim of This Research

The main purpose of the paper is to develop a class of Quintic Spline Collocation

Methods (QSCMs) when applied to differential-algebraic systems with index greater than

or equal one. It is well known that DAEs can be very difficult to solve when they have a
higher index, i.e., an index greater than one.

2. Methodology

First, in theoretical part: we discuss the error analysis and order of
convergence of spline approximations methods applied to solvable linear constant
coefficient DAES

Ay+By=g(t), (1.1)

of arbitrary index-v, where A and B are square constant matrices and g(t) is a smooth
function. After that, we study the strict stability properties of the spline approximations
applied to nonlinear systems of DAEs of the form,

F(t, y(©), y'(1)=0, (1.2)

where the initial values of y(tp) are given and F is linear in y".

Denote by t, =a+ih, i =0(@)N, the grid points of the uniform partition of [a,b] into
subintervals 1, =[t, ,,t;], i =1(1)N. A fifth C*-spline functions S(x) can be represented on
each I; [12], by

S(t)=T°[(6T *+3T +DS + (3T > +T)SH + (3T

_ _ . _ , (1.3)
+TO[(6T > +3T +1)S[” (3BT 2 +T)S® +(3T%)s]
where T =% T=1-T; T, T <[0,1], and
SO =5(t,), S® =hs'(t,), S® =h?>S"(t,), i =0)N. (1.4)

Differentiating (1.3), we have
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hS'(t)=T?[-30T?S9 +(@+2T -15T *)SY + (T -3T*)S?]-
T2[-30T 2S@ - (@+2T -15T )S® + (T -3T3)s@]
The spline approximations use three collocation points ti_1+cj =t,,+¢;h, j=11)3, in

(1.5)

each subinterval I;, i =1(1)N,with c,,c, €]0, 1[, cs=1, c, # ¢, be fixed and
h=(b—a)/N is the constant stepsize.

We formally apply the spline approximations (1.3)-(1.5) to the DAE (1.2) to obtain
the system

F[ti71+C1' S(ti71+cl)’ S’(ti71+cl)]) =0,

Fltic,r Sisc,) S'(tue,)]1=0, 1=1ON, (1.6)

F[t, S(t), S'(t)]1=0,
with initial-values:

S(t,) =S,8'(t,) =h"'s®,s"(t,) =h?S? . 1.7)
Practical part: numerical experiments are presented that illustrate the theoretical

results. We have accomplished the computations by using programs Mathematica Version
5.0.0.0 and Turbo Pascal in double precision.

3. Paper Outline

The paper is organized as follows: In Section 2, the case of linear constant coefficient
index-v systems is studied. It shows that the Quintic C*- spline collocation methods when
applied index-1 systems are stable (Corollaryl), consistent of order five (Theorem1), and
convergent of order five (Corollary2). After that, we generalize the QSCMs when applied
to differential-algebraic systems with index greater than one. It turns out that proposed
QSCMs are stable (Corollary3) and consistent of order four for all v>2. In Section 3 the
QSCMs are shown to be strictly stable if applied to index-v DAEs for all
0.949 < ¢, <c, <1 (Theorem 2). In Section 4, we present numerical experiments to test the

efficiency of the QSCMs when applied to differential-algebraic systems for both linear and
nonlinear problems.

Linear constant coefficient systems:
In this section, we consider linear constant coefficient systems of arbitrary index-v.
We derive conditions that are sufficient to ensure the order, stability, consistency and
convergence of the QSCMs when applied to these systems.
Consider the linear constant coefficient DAE (1.1)
Ay+By=g(t) (2.)
of index-v. We assume this system is solvable, so that there exist nonsingular
matrices P and Q such that,

PAQzLI) I\ﬂ PBQ:E ﬂ (2.2)

where | is an identity matrix and M is a block diagonal matrix, M=diag
(M1, Mo, ..., M) composed of blocks of the form
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M, = ! O . : (2.3)
1 0
Applying the spline approximations (1.3)-(1.5) to (2.1), we get
AS(t.c,) BS(tisc,) = 9(tse,) . i=@®3 . i=1DN, (2.42)
with initial-values:
S(t)) =S4”,8'(t;) =h™'S{”,8"(t,) =h*Sg” . (2.4b)

Let S (ti—l+Cj) = Q_ls(ti—l+Cj)’ S ’(ti—1+Cj) = Q_lsr(ti_qu ) g(ti—1+Cj) =P g(ti—l+Cj )
and premultiplying by P, we can rewrite (2.4a) as
(PAQ)S ,(ti—l+Cj )+(PBQ)S(t ;¢ j) = g(ti—l+Cj ), JF1(1)3.
In this form, the differential and algebraic parts of the system are completely
decoupled from each other. Thus, it is sufficient to study the differential and algebraic parts

separately to get an understanding of the general linear constant-coefficient DAE.
Consider then a canonical algebraic subsystem of index-v

My'+y=g(t), (2.5)
where M is a vxv matrix of the form (2.3), g(t)=(g,(t),---,g,(1)",

and y(t) = (y,(t),---, y, (t))". The solution to (2.5) is given by
yl(t) :gl(t)
Y2 (t) =9,(t) — yi(t)

Y, (1) =g, + (D)"Y (1)
Applying the approximations (1.3)-(1.5) into (2.5), we obtain
M S’(ti—1+Cj ) +S(ti—1+Cj ) = g(ti—l+Cj ) ) J :1(1)3 , :1(1)N- (2-6)

Let S=(S5,....,S,)",8'=(5/,...,S!)", where S denotes the derivative
corresponding to the j th component of the solution vector.

1. The Methods QSCMs for Index-1 Problem.

We assume that the methods are applied to index-1 systems, then (2.6) reduces to a
set of algebraic equations of the form

Si(lisg,) = 0i(ting), J=1D3, i=1DN, (2.79)
with initial values:
Si(t,) =519, S{(t,)=h"SH, S/(t,)=h?S7 . (2.7b)

By using the approximation (1.3) into (2.7a) , i.e., taking S;=S, we obtain
c;[(6¢% +3c; +1)S{%, + (3¢} +¢,)SM, + (5 ¢)) S, 1+
ci[(6c] +3¢; +1)S — (3¢} +T,)S{) + (5 €))SHT = Gitisc,) + J =112
SO =g,(t,) . (2.80)
where C; =1-c;, j=11)3.
Substituting S,% =g, (t;), S{%, = g,(t;,) into (2.8a), we have

(2.8a)
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c3[-(3¢7 +¢,)SH + (3 €/)SAT1=-C (3¢} +¢,)SH, + (5 ¢1)S{,1-
C;(6¢7 +3c; +1) 0, (t) + 9 (tisc,) — €] (6T, +35; +1) g, () (2.9)
i =1(1)2,

which are equivalent to the following recurrence formula:
As, =Bs, . +D g, i=10N, (2.10)

where
[-d@ere) Joiel] g _[-elGire) ~Feic

1~ 3362 4+ € 2 | 1~ &3(3c2 1 x3.2 |
_Cz( C, +C2) 2 _Cz( C, +C2) ) C;

_{—613(6cf+3c1+1) 10 —cf(6c‘:f+3c‘:1+1)}

| Ol

N N[
Nw P w

C
C

(@]

Lol _g36c2+3c,+1) 0 1 —ci(6C2+3C,+1)
and
91
N TR R N I P
STl g ST g@ 9, = g,
10 1,i-1 1, i-1+C,
L 910 ]
Multiplying (2.10) by A7, we get
Sii= A1§1, i-1 +A171D1 9, Jd=11N, (2.11a)
where
_AlR -
~ Al - Al Bl_ )
_ C,C, (Cl tC + 201C2) —GG,
Clzcg 2C1 C,

................................................................................... (2.11b)
—2[4c, +4c, +c,c, —3(c2 +c” +c,c2 +c,,cl)] ¢ 3¢, +3c, —2¢,c, —4
2.2

C, C, : C,C,

If 0<c, <c, <1, then A, = A;* B, exists because
_ 2 _ 2
-e)’l-c)’
Cl CZ
The QSCMs when applied to index-1 system (2.7a)-(2.7b) will be analyzed in the

form (2.11a) .
Definition 1 [6]: The QSCMs (2.11) are called stable if || (A)" || < k = const for all

A= 1@-c)A-c,), —¢)eici #0,and |A, |-

3 ~ ~
n>1, where k :1212(3JZ_;| al; |, A" =[a";],and A is the matrix (2.11b).

Corollary 1. The QSCMs applied to index-1 systems are stable if eigenvalues of the
matrix A satisfy

[y | o, | <1, (2.13)
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for c,,c, €]0,1[, and c, #c,.
Proof. The spline methods (2.7a)-(2.7b) are stable for index-1 systems if ||,Z\£1|| is
uniformly bounded for all n>1, according to the definition 1 of stability. Moreover if

~ 2 ~
|, ||, <1 are satisfied, then | A" [l <k, k :E%Z] a, |, where Al =(af}), and
=

also we get k— 0 as n— oo. Therefore the matrix Al has two different eigenvalues, for
some c,, c,, the computations of eigenvalues are given in Tablel. In Table2, we show than

| A" ||, <5.4580,V n=>1 for example the method (c, =0.65, t, = 0.999)

Table 1: The methods (2.7a)-(2.7b) are stable for some values of C;, C,

The method (cy, C,) The eigenvalues
¢,=0.50 €,=0.9998 p, =-3.994E-8 m,=-1.00
¢,=0.53 €,=0.9940 n, =-3.047E-5 ., =-0.9404
¢;=0.57 €,=0.9998 u, =-3.013E-8 n, =-0.755907
¢,=0.60 c,=0.99 , =-6.169E-5 p,=-0.735135
¢,=0.65 c,=0.999 p, =-5.339E-7 n, =-0.544065
¢;=0.75 c,=0.86 u, =-3.086E-3 n,=-0.954068
¢;=0.80 c,=0.81 n, =-3.514E-3 n,=-0.978606
¢,=0.8028 c,=0.80281 n, =-3.641E-3 p,=-0.999948
vc,, ¢, €]0.8028,1[, and ¢, #cC, 11, =-0.000392 u,=-0.389119
for example, ¢,=0.81, ¢,=0.95

Table 2: The norm || ,Z\” || is uniformly bounded for all n =1, for ¢, = 0.65, t, =0.999
1 oo
n 1 2 5 10 20

||A“ k=5.4580 | k=2.9695 | k=0.4783 | k=0.0229 | k=5.1807E-5
1

Definition 2 [6]: The Quintic C2- spline collocation method is said to be consistent
of order p if max| d; [[=O(h"), where d; is local discretization error of (2.11a) at t. .
0<i<n

nN— o0

k— o

o0

To find the local error, let vy, (t,_,) = 9,(t._,).
Theorem 1. Let y, e C°[a,b], then the methods (2.7a)-(2.7b) applied to index-1

systems are consistent and are of order five, for all c,, ¢, shown in Table 1.
Proof. The local discretization error of (2.7a)-(2.7b) at t; is defined to be
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AU
hy, (t, hy;(t, t
d., = { 23’1”( )} AilB { 2y1”( _1)} AilDl y1(|—1+cl) i =1(DN, (2.14)
i) Vit ) Vi (tisec,)
yi(t;)
where y;(t) is the exact solution. Now using Taylor's expansion

yo(t) = z( 1) yf”(t_1>+(6—'1’6 © (1) telt, ],

and applylng to (2.14), we get

- 7%0 (61 62) (6) 6 6 .

gi,l =11 Y1 (ti—l)h =0(h”), i=1)N.
m(4cl + 4C2 —30102 —5)

Observing that d;, =0 for Taylor polynomials of degree<5, in these cases the

methods are exact. We deduce, according to Definitions 2, that the methods are thus
consistent and are of order five for all ¢, ¢, in Table 1. [

Corollary 2: Let y, e C°[a,b] be Lipschitz continuous, then the approximation
S, (t) converges to the solution y,(x) as h — 0 whenever (2.13) is fulfilled and
limh's® =y (t,), j=012.
Furthermore, the convergence order is five, i.e., we have
|y, (& )—S("’(ti)lS Coh®, i=1IN , (2.152)

|y () - S‘”(t)|<Ch5r,r_12 i=1()N , (2.15b)

whenever the initial-values (2.4b) satisfy (2.15). In addition, the following global
error estimate holds true:

T3-F3
|y, (1) =S, (t)| = g .t )h® =0(h°), telt,,.t,].

2. The Methods QSCMs for Index-2 Systems.
Now, applying QSCMs to index-2, then (2.6) reduces to a set of algebraic equations
as follows:

Sl (ti—l+CJ- ) = gl(ti—hcj )’ (2-163)
Sz (ti—1+CJ- ) =0, (ti—l+CJ- ) - gi(ti—l+Cj ) ) J = 1(1)3 , 1= 1(1)N : (2-16b)

Also, applying the approximations (1.3)-(1.4) into (2.16b), i.e., taking S,=S we have
ci[(6c? +3¢; +1)S) — (3¢ +¢;)SP +(5 ¢/)SA]+

c’[(6c? +3c; +1)S{, +(3c? +¢;)S8, +(3¢H)SP,] = 2.172)
9, (ti—l+Cj ) - g:[(ti—lJer ) , =12
S =0,(t)-g(t) - 217b)

Substituting S5 =g, (t,) - 9;(t,), 574 = 9,(t4) —9;(t ), into (2.17a), we get
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—c(3T; +T;)SP +%c?6§8§?? =—-C;(3ci +¢;)S{ —%Cf ciS -
C}3 (6(3? +3c; +D[9, (4 1) — 9, (6 )]+ [gz(ti-1+Cj )— gl’(ti—l+Cj - (2.18)
ci(6cy +3c; +D[g,(t) - 9:(t)] . j=12.
From the equations (2.9) and (2.18), we get the following recurrence formula:
Ays, . =B,s, ., +D,G,, i=10N, (2.29)
where
-c/(3¢7 +¢) Scic] 0 0 |
A =|-ciEsive) fol 0 o 1_|A O
2 0 0 —cl(g+3¢7) 3cic] 0 §A1
0 0  —cj(c,+3c7) 3cicl
-ci(3cl+c) -3cics 0 0 |
B — ~Cy(3¢ +c,) -3cic] 0 0 _ BlO
i 0 0 _613(C1+3C12) _%613(312 0 Bl ’
I 0 0 ~C;(c, +3c]) -3E.c; |
~-c2(6¢’ +3c,+1) 1 0 —ci(6¢c +3c, +1) 0 00 0
D - -G (6c+3c,+1) 0 1 -cl(6cs+3c,+1) 0 00 0
? 0 00 0 ~ci(6c2+3c,+1) 1 0 —ci(6c2+3c,+1)
0 00 0 —Cy(6¢5 +3c,+1) 0 1 —c3(6¢s +3c, +1)
0 D,/

S, =(5),8:7,85, ST,
§2, i-1 = (Sl(,lg—l’ Sl(,zi)—l’ ) Sg)w Sé,z?fl)T )
(_32, i = (Gl, i1 Gl, i-1+Cp * Gl, i-1+Cy 'Gl, i ’Gz, i1 Gz, i-1+Cp 7 Gz, i-1+C, ’Gz, i)T .
Gy =09:(t1) . Griee, = 91(tiie ) Griare, = 91(isie,) Gri = 9: (),
G2,i—1 =0, (ti—l) - gll(ti—l) ) Gz,i—1+cl =0, (ti—1+Cl) - g{(ti—1+cl) )

Gz,i71+02 =0, ('[i71+c2 ) - glr(ti—l-‘rCz) ) Gz,i =0, (ti) - gJ’.(ti) )

moreover, the 2x2 matrix 0 and the 4x8 matrix 0 all elements are zeros, and the
matrices Ay, By, D are in the relation (2.10).

Multiplying (2.19) by A3, we get
S, =A,;S,1.+A'D, g, (2.20)
where A, = A'21 B,.

We can find by using Mahtematica Program that A2 has the form
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~ |A; 0 -
A2 = 1~ , Where, the 2x2 matrix 0 and A as above.
0 A

~ - _ 4M_ 4
If 0<c, <c, <1,then A, exists because |A, |= a C1)4(14 C) Lo
Cl CZ
3. The Methods QSCMs for Higher-Index Systems.
In general, suppose that QSCMs are applied to index-v, then (2.6) becomes:

Sy (ti—1+Cj )= gl(ti—l+Cj ), (2.21a)
S, (ti—1+Cj )=10, (ti—1+CJ- )— gl,(ti—lJer ) (2.21b)

v-1
S, (trae,) = 0y (biae )+ D (<) 98 (tse)), =103, i =LON.  (2.21c)
r=1
Using the approximation (1.3)-(1.4) to (2.21a)-(2.21c) we get
s.i=A,s,,+A'D, g, 2.22)

where to this end, Av can be found after tedious calculations, as

AL, 0 - 0
A-0 M
R R

0 0 A

where Av isa 2vx2v matrix, and which yields the following Corollary.

Corollary 3. The QSCMs applied to index-v systems DAEs are stable if
|y |, I€1, where p,p, are the eigenvalues of the matrix A, (2.11b).

~

Proof. Note first that If O<c, <c, <1, then A2 is existed because

- _ v 2v ~ ~
|A, |= (1 Cl)ZV(lzv )" 0. Since A has the same eigenvalues of A, with
C1 C2
multiplicity v, then according to Corollary 1 we find that two eigenvalues satisfy (2.13) for
the same c,, c, listed in Tablel. (]

Finally, for algebraic subsystem of index-v, the local error satisfies
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0,(ty) |

gl(ti—l+Cl)

() | hyi(t) | 9 (tisc,)

h®y(t) h?yy(t ) 9.(t)

d,=| : |-AMB| : |-AID |

hy.(t) hy,(t..) 9,(ty)
[h*yl(t)] | h?y7 (i) 9, (tisic,)
gv(ti—l+02)
L 0. (5)

Using Taylor’s expansion, we get
5 r
0,(t) = y,(t) = %yf”(ti_m' +0(h*)telt, ], T €[01], y, eC'[a,b],
r=0 !-
5 hl‘ 4 hr
> Y )T +O(h®) + Xy (1, )T +0(h?),
=0 I =0 I

9, (1) =y, (1) + y: (V)

9, (®) =y, (1) = (D" ;. (1)
O
Thu;, the local error is given by
g, (®) -y:(t) =0(h®),
9, (1) —y,(t) - i (t) = O(h®),

h .. ) v=12,...
Fl v ()T +0(h°)

4
r=0

9, () -y, (1) + (=1 y\, (t) = O(h°)
We observe that the methods QSCMs applied to systems with index greater than one
are exact for polynomials of degree <4 , we deduce according to Definitions 2 that the
methods are thus consistent and are of order four for all c,, ¢, given in Tablel.

Strict Stability:
Before we can get started, we need the following definition.

Definition 3 [15]. The QSCMs (1.6)-(1.7) applied to nonlinear systems of DAEs
(1.2) are strictly stable if the difference between perturbed spline collocation methods step,

Fltisne, Z(tiaee, ) +801, Z'(tisg)) =0, 1,k =113, i=1D)N, 3.1)

whereZ, =S, +83”, and [3{)| <A,, k=0(1)3, and unperturbed spline collocation

methods step (1.6)-(1.7), satisfy Hzaimj )= S(t ssc, )H <K,A,, j=1(1)3, i=1(1)N, where

0 <h <h, and Ko, ho are constants depending only on the method and the DAEs.
We now solve (2.5) by the perturbed spline collocation methods:
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M Z,(ti—1+Cj)+Z(ti—1+Cj)_8€fi) = g(ti—1+Cj) , k=113,
where Z'=(z,,2,...,2))", Z=(2,,2,,...,2,)" .
Then, we have

z,;=A,z2,,+A D, g  +5,; (32)

where the perturbations 3, ; = (8%%,82,...,8%;,6?)" satisfy

v, i

2, =@023,. 2028,

v, i

_ (3] (2) () (2) \T
ZV, i-1 (Zl,i—l’zl, i—l""’Z ZV, i—l) .

v, i-17

Subtracting (3.2) from the corresponding expressions for the unperturbed solution

§v,i

v

‘SA

(2.22),and letting E, ; =Z,; - S, ;, we obtain,
E,i= Av E.ii+8,;. (3.3)
Using ||.|_ . we have from (3.3)
IE,iISRE, sl +A,, (3.4)
where

R, | A, || and |3, <A,
Inequality (3.4) is defined recursively by

i i-1
IE,; ISR, I E.o I +Y R A, i=1(1)N.
k=0

which can be rewritten in the form

i 1-R' .
E,.I€R, [|E + — A, 1I=1(1)N.
IEui ISR Iy I+ o=, 510)
. 1-RY 1 :
Note that ’!llm 1 F; =1 r if R, <1. Thus, we have the following theorem.

Theorem 2: The QSCMs are strictly stable for index-v systems of DAEs (1.2) iff:
R, =[| A, || <1. (3.5)
Proof. To prove that inequality (3.5 holds, we easily find that

1<i<?2

~ ~ 2
R, =l A, L=l A ]l.=max > &’ | ,v=1, where A, =(&;). Using Mathematia, we
-1

get the values of c,, c, which satisfy the relation R, <1 in Table3. Moreover, for R, <1,
. I . 1-R
wehave Lim|E,[l<|E, || LIMR,'+A, Lim>—% = KA

i—0 1_
v

v

where K, = ﬁ This implies according to Definition 3 that the QSCMs applied

v

for index-v systems are strictly stable. [
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Table 3: The values of c,, c,which satisfy the relation R, <1
¢, =0.91 ¢, =0.999 R, =0.922525
¢, =0.92,¢c,=0.99 R, =0.822904
¢, =093 ¢, =098 R, =0.932804
c, =094, ¢c,=0097 R, =0.939393
¢, =0.95¢,=0.98 R, =0.705175
¢, =0.95, ¢, =0.999 R, =0.49026
0.949<c, <c, <1 R, <0.978285

Numerical Results:

The experiments below are designed to test the efficiency of the methods QSCMs
when applied to differential-algebraic systems for both linear and nonlinear problems. All
computations where made with programs Mathematica Version 5.0.0.0 and Turbo Pascal
in double precision.

Problem 4.1: Consider index-2 Hessenberg DAEs [8],
y' =tz> +w+g,(t),
' =tExp(y)+tw+g,(t), 0<t<]
O=y+tz+0,(),
with y(0) = z(0) =w(0) =0, where g, (t), g, (t) and g,(t) are compatible to exact

solutions, y(t) = Ln(1+1t), z(t) = w(t) = 1—1'[ The results are given in Table 4.
+

Problem 4.2: Consider the problem having four differential equations and one
algebraic equation [3]

X, =—e"X, +X, +X, +y—e"
Xy =—X; + X, —sin(t) x, + y —cos(t)
X, = sin(t) x, + X, +sin(x) x, —sin?(x) — e~ sin(x)
X, = cos(t) X, + X, +sin(t) x, —e™ (L+sin(t)) — cos®(t) —e'
0 = X, sin’(t) + x, cos? (t) + (x, —e")(sin(t) + 2 cos(t))
+sin(t)(x, —e ™ )(sin(t) + cos(t) —1) —sin®(t) — cos®(t)
The exact solution to this system is x, =sin(t), x, = cos(t), x, =€', x, =e,and

y(t) =e'sin(t). It is easy to verify that system is index-3 for all t. The absolute error of

the approximate solution gives in Table 5. Fig.(1) shows both the approximate solution and
the exact solution of y over the interval 0<t <10, using the step size h=0.1.
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Fig.( 1). Both the approximate solution and the exact solution of
y in problem 4.2, for ¢,=0.5, ¢,=0.9998, and h=0.1.

Problem 4.3: Consider the nonlinear index-2 DAE [1]
yi ==Y t+Y _Sin(t) - (1+ Zt)v
Y2 ==Y1¥s
0=y +Vy, ¥, +y,(=sint)-1+2t), te[o,3],

subject to the initial condition y;(0)=1, y»(0)=0, y3(0)=-1. The exact solution is
y1(t)=1-2t, yo(t)=sin(t), Yy, =—cos(t)/(1—2t). A singularity is located at t:% . Using this
problem, we test the spline methods formulations in Section 1. We list the computational
results in Table6. Clearly, the spline methods work well for (c;=0.57, ¢,=0.9998), and
(€1=0.65, ¢,=0.999) while Baumgarte's method [1] blows up upon hitting the singularity. In

Fig.(2), we have plotted both the approximate solution and the exact solution of y; over the
interval 0 <t < 3, using the step size h=3/40, for ¢;=0.6, ¢,=0.99.

118



Tishreen University Journal. Bas. Sciences Series 2010 (3) sax (32) alaal) L] aslell @ (0850 dnals Alas

20 ~

15

10 -

-10 -

Appr. 00000

Exact -

Fig.( 2). Both the approximate solution and the exact solution of
y3 in problem 4.3, for ¢,=0.6, ¢,=0.99, and h=3/40.

Problem 4.4: Consider the nonlinear index-4 DAE

Y1,_Y2 =0,

Y, —Y; =0,

yé_y4 =0,
y,—Sin(t)=0, te[0,10],

subject to the initial conditions y1(0)=0, y.(0)=1, y3(0)=0, y4(0)=-1. The exact
solution is yi(t)=sin(t), y2(t)=cos(t), ys(t)=-sin(t), y4(t)=-cos(t). We show the computational
results in Table7. Fig.(3) explains the approximate solutions and the exact solutions of y; ,
Y2, Y3, Y4 by ¢1=0.53, ¢,=0.994, and h=0.05.

Table 4: The global errors for the solution of problem 4.1 [ 8].

modified Adomian decomposition method Present method
t [8] for ¢,=0.5, ¢,=0.9998
dy oz dw dy 0z ow

0.1 | 8.98056E-10 |1.20912E-10| 1.77933E-8 |6.97075E-11|6.97075E-10| 8.61539E-10
0.2 | 4.63777E-7 | 1.16056E-7 | 8.92432E-6 |2.06748E-10| 1.03374E-9 | 1.01819E-9
0.3 | 1.79601E-5 | 6.31386E-6 | 3.32789E-4 |3.52903E-10| 1.17634E-9 | 1.31223E-9
0.4 2.40711E-4 | 1.06358E-4 | 4.25255E-3 |4.82894E-10| 1.20723E-9 | 1.12924E-9
0.5 | 1.80331E-3 | 9.44037E-4 | 3.0025E-2 |5.83259E-10| 1.16651E-9 | 1.16546E-9
0.6 | 9.34963E-3 | 5.59329E-3 | 1.44694E-1 |6.48861E-10| 1.08143E-9 | 8.14168E-10
0.7 3.75984E-2 | 2.50912E-2 | 5.3171E-1 |6.79883E-10|9.71262E-10| 7.27947E-10
0.8 1.25531E-1 | 9.18675E-2 158743 |6.76113E-10|8.45141E-10| 3.43036E-10
0.9 | 3.63586E-1 | 2.88128E-1 | 3.99439 |6.47592E-10|7.19547E-10| 2.55590E-10
1.0 | 9.41377E-1 | 8.00027E-1 | 8.62456 |5.93930E-10{5.93930E-10| 6.03585E-11
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Fig.( 3). The approximate solutions and the exact solutions of y; , Y, , Y3, ¥4 by
€:=0.53, ¢,=0.994, and h=0.05, in problem 4.4.
Table 5: The absolute error for the solution of Problem 4.2 [3].
Present method ( ¢,=0.5, ¢,=0.99), using the step size h=0.1.
t 5%, 5 X, 3 X 5X, sy
1.0 1.6254E-12 1.7312E-12 | 1.4800E-14 | 1.9253E-12 | 3.7635E-11
2.0 1.9271E-12 1.0742E-11 | 1.6891E-12 | 8.6127E-13 | 1.0713E-10
3.0 2.5514E-11 3.9746E-11 | 2.1647E-11 | 5.2040E-12 | 1.8240E-10
4.0 1.9124E-11 1.4622E-09 | 1.2677E-10 | 2.0503E-10 | 4.5873E-09
5.0 5.2136E-09 2.5915E-08 | 4.7350E-10 | 1.8017E-09 | 7.6844E-07
6.0 4.1878E-11 1.7231E-09 | 9.5689E-09 | 1.6561E-10 | 2.0305E-08
7.0 4.3640E-11 9.6056E-09 | 2.9558E-09 | 3.5497E-09 | 9.0305E-08
8.0 2.4179E-09 1.0691E-07 | 3.7785E-09 | 1.6413E-08 | 7.6251E-06
9.0 5.1095E-12 5.6267E-08 | 2.7056E-08 | 1.3849E-08 | 1.8266E-06
10.0 2.3257E-11 2.2294E-07 | 5.8476E-08 | 2.0865E-08 | 7.6798E-06
Table 6: The absolute error for the solution of problem 4.3 [1].
Baumgarte's Present Methods
Time | SRM (@, =0)[11| "\athod [1] | €=0.57, ¢,=0.9998, | ¢,=0.65, c,=0.999,
h=1/15 h=0.03
0.1 0.40E-6 0.49E-7 0.285991E-14 -
0.2 -- -- 0.415592E-13 0.14091E-13
0.3 0.25E-6 0.15E-6 0.807113E-13 -
0.4 -- -- 0.178560E-12 0.18366E-13
0.5 0.14E-6 0.93E+1 0.634029E-12 -—--
0.6 -- -- 0.279832E-12 0.88682E-13
0.7 0.46E-7 NAN 0.420595E-12 -
0.8 -- -- 0.909076E-13 0.59696E-14
1.0 0.60E-7 NAN 0.770872E-13 0.19347E-14
2.0 --- 0.400684E-13 0.19347E-14
3.0 --- 0.149525E-13 0.17411E-14
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Table 7: The absolute error for the solution of problem 4.4, with Index-4.

Present method ( ¢;=0.53, ¢,=0.994), using the step size h=0.05.
t 5y, 5Y, 5y, 5y,
1.0 0.0E+0000 5.3E-0013 3.5E-0009 6.89107801E-08
2.0 0.0E+0000 5.7E-0013 3.7E-0009 5.60850989E-08
3.0 0.0E+0000 8.9E-0014 5.8E-0010 1.56034565E-08
4.0 0.0E+0000 4.8E-0013 3.1E-0009 7.30371071E-08
5.0 0.0E+0000 6.0E-0013 4.0E-0009 6.04439542E-08
6.0 0.0E+0000 1.8E-0013 1.1E-0009 9.93085675E-09
7.0 0.0E+0000 4.1E-0013 2.7E-0009 7.27823161E-08
8.0 0.0E+0000 6.2E-0013 4.1E-0009 7.14150049E-08
9.0 0.0E+0000 2.6E-0013 1.7E-0009 8.14835006E-09
10.0 0.0E+0000 3.4E-0013 2.2E-0009 5.99824012E-08

Conclusions and Recommendations:

A collocation approach that produces a family of Quintic Spline Collocation
Methods has been described for the approximate solution of problems in higher index
differential-algebraic equations. The presented methods when applied to systems with
index greater than one are consistent and are of order four for some c,, ¢, given in Tablel.

The comparisons of our numerical results with other methods show that our results are
better in accuracy than other methods. (see, Tables 4,6). The presented methods if applied
to higher index differential-algebraic equations are accurate for solving problems, which
have oscillatory solutions (see, Table7, Fig(3)).

Finally, we recommend the following:

Studying the QSCMs methods for solving boundary value problems of higher index
algebraic-differential equations.
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