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O ABSTRACT 0O

This paper presents an iterative method based on spline function approximations for
the numerical solution of the Falkner—Skan equation (FSE) over a semi-infinite interval.
This technique will transform the FSE into two initial value problems, so the solution of
FSE will be reduced from the interval [0,o0[ into [0,1]. Spline approximations are applied

directly to the FSE without its reducing into a system of first-order differential equations,
thus, the algorithm of spline method has a computational cost that is cost-effective. The
spline solution of the FSE is existent and unique, and the convergence analysis for the
spline method applied to the FSE is discussed. Numerical results are compared with those
obtained by previous methods under various instances of the FSE. The comparisons show
the accuracy and efficiency of the presented methodology.
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Introduction:

Generally, no closed-form solutions are available for nonlinear two-point boundary
value problems (BVPs). Numerical solutions of these problems have always been of
interest for scientists and engineers. The well-known nonlinear third-order Falkner-Skan
equation is much more challenging since it is a BVP depicted on an infinite interval. This
problem of laminar boundary layer resulting from the flow of an incompressible fluid past
a semi-infinite wedge is of considerable practical and theoretical interest. The solutions of
the Falkner-Skan equation are similarity solutions of the two-dimensional incompressible
laminar boundary layer equations. Due to the appearance of irregular boundaries, shock
waves, boundary layers, derivative boundary conditions, etc., the solutions so obtained
have in many cases been unsatisfactory because of poor resolution spurious oscillations,
and excessive computer time storage. The Falkner-Skan equation is given by [1-14]

f"()+a £ () T"(n)+ BIL-(T'())*1=0, O<yp<oo (1.1)
subject to the boundary conditions
f(n)=0,as n=0, (1.2a)
f'(7)=0,a =0, (1.2b)
f'(n)=1,a n—>oo, (1.2¢)

where, f' the fluid velocity, is a function of 7, « is assumed constant and g is a
measure of the pressure gradient. The prime denotes differentiation with respect to 7. We

can find easily that the solution of equation (1.1) satisfies the asymptotic condition:
f"(n) >0as n—>w (1.3)

Special Cases of the Falkner—Skan Equation (FSE) [9, 13, 14]:
® Case 1: If a=1/2ora=1and #=0, the FSE is called a Blasius flow. This

Blasius flow gets FSE in the study of a laminar boundary layer along a thin flat plate.

® Case 2: If =0, g =1, the FSE is called a Pohlhausen flow .

® Case 3: If =1, f=1/2, the FSE is called a Homann flow.

® Case 4: If =1, =1, the FSE is known as the Hiemenz flow.

® Case 5: Other cases are resulted from the FSE when (a =1, # €[-0.1988, o).

Numerical techniques for the solution of the Falkner—Skan equation are mainly based
on : finite differences [1,2,11], shooting [5,13], quasilinearization method [14], Chebyshev
spectral method [3,8,4], differential transformation method [7], Homotopy analysis method
[12] and rational scaled generalized Laguerre function collocation method for solving the
Blasius equation[9].

In any case the far field boundary condition is a problem, where the correct

value of unknown shear stress fv'; at the wall must be found which ensures an asymptotic

approach of the velocity values of fat infinity to unity the well-known matching
condition of viscous solution (near-wall) to the inviscid solution. Such techniques are
termed as "shooting method".

1. Importance and Aim of This Work:

It is well known that the Falkner—Skan equation is very difficult to be solved when
there are many cases, for this reason, the numerical solutions are very important. We
purpose to develop a numerical method based on spline function approximations to solve
the Falkner—Skan equation over a semi-infinite interval. The algorithm of spline method
has a computational cost that is cost-effective. The proposed method will enables to
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approximate the solution and its derivatives of the problem at every point of the range of
integration. The approximate solutions and their derivatives are illustrated for special flows
such as: Blasius, Pohlhausen, Homann and Hiemenz flows over various intervals. The
local errors and the rate of convergence are computed for present spline method. The
approximate solutions of the wall shear stress of Falkner—Skan equation over various
intervals are showed.

2. Methodology:
Theoretical part: The Falkner—Skan equation and its solution are transformed over
the interval [0, into two I\VVPs and their solutions in the interval [0, 1]. After that, Spline

approximations are applied directly to approximate the solution and its derivatives up to
third-order of the problem at every point of the range of integration. The spline
approximation solution of the Falkner—Skan problem is existent and unique. The
convergence analysis and the rate of convergence for the spline method applied to the
problem are discussed. Finally, an iterative algorithm is proposed for solving Falkner—Skan
problem.

Practical part: Numerical results for various instances are compared with those
obtained by others. The comparisons show the accuracy, robustness and efficiency of the
presented methodology. The computations are accomplished by using Mathematica
Version 5 and Turbo Pascal in double precision.

3. Method of Solution:

With the change of variable y:nL and under the transformation x=77i, the
Falkner—Skan equation (1.1) is transformed to
y"()+n2 ay(x) y' () +n2 plL-(y'(x))*1=0, xe[0,1], (1.4)
where
dy_1dfdyg_df  d2y 1d2f  d3y 1 d3f
dx 7z dpdx dpy’ dx> 7, dp®’ dx* 5% dnp®’
The boundary conditions (1.2) are transformed to
y(0)=y'(0)=0 and y'(1) =1, (1.5)
The asymptotic boundary condition (1.3) is transformed to
y'@d)=0 (1.6)

The shooting technique for the nonlinear third-order boundary-value problem (1.4) is
similar to the linear case, except that the solution to a nonlinear problem cannot be simply
expressed as a linear combination of the solutions to two initial-value problems [15].
Instead, it needs to use the solutions to a sequence of initial-value problems of the form:

y" (%0 + 172 a y(x, 1) y'(x,0) +72 AL (Y (x,1))*1=0 , (1.7)
subject to the initial conditions
y(0,t) =y'(0,t)=0 and y"(0,t) =t, (1.8)

here the solution depend on both x and t.
We do this choosing the parameters t =t in a manner to ensure that

Limy'@d t)=y'@®)=1 (1.9)
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where y(x,t,) denotes the solution of the initial-value problem (1.7)(1.8) with
t=t,,and y(x) denotes the solution to the boundary value problem (1.4)-(1.5).

We start with a parameter t,that determines the initial elevation at which the object
is fired from the point (0,0) and along the curve described by the solution to the initial-
value problem (1.7) with initial conditions y(0,t)=y'(0,t)=0 and y"(0,t)=t,. If
y'(x,t,) is not sufficiently close to 1, we attempt to correct our approximation by choosing
another elevation t, and so on, until y’(x,t,) is sufficiently close to 1.

If y(x,t) denotes the solution to the initial-value problem (1.7)-(1.8), the problem is
to determine t so that
y'(1,t)-1=0 (1.10)
Since this is a nonlinear equation, we shall use Newton’s iteration method to
generate the sequence {t, }, only one initial value, t,, is needed, however, the iteration has
the form:

t =t —M k=1.2,... (L11)
ay'(li t1)

and requires the knowledge of %y’(l, t ).

Still this presents a difficulty, since an explicit representation for y'(1,t) is not
known; where we know only the values y'(Lt,), y'(Lt)),..., Y'(Lt, ) . For this reason, we
take the partial derivative of problem (1.7) . This implies that

%y"’(x,t) =§{—nia Y)Y~ 2 BL- (Y (D) T}

_2_2 "2 _12% 3_2 "2 _IZQ
_ax{ n.ayy —n.pl (y)}8t+8y{ n.ayy' —n.pll (y)}at+
8 2 "2 _ n2 ﬂ’
ay'{ mayy —n,BA-(y)1} s

Since x and t are independent, then we have

0
ay!!

{—niayy”—niﬁ[l—(y')z}%

a m ”n ! '

Tty =—n2ay’ )y Y (0 + 202 By () 2 (x.1)

i ¢ o (L.12)

an? y(x,t)égt (xb), xe[0],

the initial conditions (1.8) are given by:
0 0 0
—vy(0,t)=0, —vy'(0,t)=0, —y"(0,t) =1. 1.13
aty( ) aty( ) aty( ) (1.13)

By using U (x,t) to denote %y(x,t) and assume that the order of differentiation of x

and t can be reversed, equations (1.12)-(1.13) transform to the initial-value problem:
U"(x,t) +an2y"(x,HU (x,t) =212 B Y (x,)U’'(x,t) +72a y(X,1)U"(x,t) =0,

(1.14)
U@0t)=0 ,uU'(0,t)=0 and U"(0,t)=1
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Now, it is required to solve the two initial-value problems (1.7)-(1.8) and (1.14) for
each iteration by using the iteration relation (1.11), which takes the form:

tk =ka _M! k:1)27 (115)
uat.,)

Spline Approximations:

Consider the uniform grid partition A:={0=x, <X, <--- <X, <X,y <---<Xy =1} of
the interval [0, IJwith mesh size h=1/N and grid points x, =k h, k=0,...N. The Spline
function approximation S(x) to the function f at the grid points is given by the piecewise
expression:

S, (X), if Xe[Xy,%],
S(X)=4S,(x), if xe[x,%.,], k=1..,N-2, (2.1)
Sya(X), if xe[xy,, %],
where

4 _ i ) 7 _ i
S, (X) = ZMS@ +ZMCk oXe[Xo Xl k=0, N -1, (2.2)
=L = b ’
By applying the Spline approximation (2.2) and its derivatives with respect to X,
S, (x), S;(x), S/ (x) on three collocation points xk+zj =X, +2;h, (j=1,2,3), into Falkner—
Skan equation (1.7)-(1.8), in each subinterval 1, =[X,, X,,;], K=0(1)N-1, we have
ST(%z,) + Sy (%2, ) S{ %z )+ B2 1= (S( (%2 )°1=0, 5123 (2.3a)
with the initial conditions
$,(0)=5;(0)=0, S;(0)=t, (2.3b)
where  S,(0) =y(0,t)=S;(0)=y'(0,t)=0 and S;(0)=y"(0,t)=t, the other
coefficients S{™(0) = y™™(0,t), for m>3 are determined by the derivation of equation
(1.7), where

S, (Xk+Zj )= i@séi) +27: (h .Zj)u

Ck,i—4' Xk+zj e[X Xl 1=123,
1=0 i=5

(2.9)
k=0,.,N-1
The first three coefficients C,,,C, ,,C, ;are computed from the nonlinear system

(2.3a) by using the initial value conditions(2.3b) if k=0, or from the previous step if k>1.
Similarly, we need to find the approximate spline solution to the initial-value
problem (1.14), to do so, we put spline approximation:
Al v Y T (y—_x ) ~
S, k(X)=ZMSS'i ﬁLZ“MCk Cooxelox] k=0...N-1  (25)
' -0 I Cis B ’
by applying (2.5) into (1.14) to be satisfied at collocation points kaj =X +Z;h,
J=1(1)3, we get:
Sex (Xk+Zj)+a77i8|:’(xk+2j)Su,k(xk+2j)+a77isk (Xk+Zj)Sl:,,k(Xk+Zj)

- Zﬁnisk (Xk+Zj )Su,k (Xk+Zj ) =0
with the initial values:

(2.6a)
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S,0(0)=5,,(0)=0, S/,(0)=1, (2.60)
where
4 (hz,)) . L(hz) ~
Su,k(xk+zj):izzo‘,%sél,t)< +;( i!J) Ck,i—4'Xk+Zj e[X X1l 1=123, 2.7)
k=0,.,N-1
and
0<z,<2,<2;=1 (2.8)

The first three coefficients 5k11,5k12,5k‘3 are computed from the nonlinear system
(2.6a) by using the initial value conditions (2.6b) if k=0, or from the previous step if k>1.
Substituting S§_, (X .t 1), Sy (Xy,t,,) are obtained by solving (2.3) and (2.6)
into the iteration relation (1.15), we have
_ Sll\l—l(XN ’tk—l) -1
S (o ts)
1. A unique Solution

As previous, the Falkner—Skan equation can be written in the following nonlinear
form:

t =t k=1,2,... (2.9)

f"(x)=F(x, f(x), f'(x), f"(x)), xe[0,b] (2.10a)
f(0)=a,, f'(0)=a, and f"(0)=a, (2.10b)
and suppose that F :[0, b]xC[0, b]xC'[0, b]xC?[0, b]— R is an enough smooth
function satisfying the following Lipschitz condition in respect to the last three arguments:
| F(X! Y1) ¥Yas ya)_ F(X,Ul,Uz,US) |S L(l Yi—U | +| Y, _uzl +| Y3 _usl)a
V(% Y1, Y21 Ya) (X Ug, Uy, U5) €0, b]x R’
where the constant L is called a Lipschitz constant for F.
These conditions assure the existence of a unique solution f(x) of problem (2.10).
By applying the Spline approximations (2.2) and its derivatives into the problem
(2.10), using three collocation points Xk+2,- =X, +2;h, (j=1,2,3), we obtain the system

(2.11)

2 3 4
s;"+(hzj)s§4>+%ckvl+(h;j) ck,2+(h2) Cpom
F (X2, 8 (%20 ' (X2 ) 8" (%2 )+ 1=1.23, (2.12a)
k=0,..,N-1,
S,(0) =a,,S,(0)=4a, and S;(0)=a, (2.12b)
We rewrite (2.12a) in the matrices formula:
AC, =S, +F (2.13)

where
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B 72h?2 73h2 74h?2 ] _ _ — 3 "~ _ _
il | Cea -8 ~hz,8" F.z,
22 h2 Z3h2 24 h2 _ _ 3 4 _
A=\ Fr Fr| C=|hCy, | Sy =|-87-hz,S57 | R =|F, |,
h2 h2 h2 2 3 4
o7 o T _h Ckyg_ _—Slﬁ’—hslf) | _Fm_

I:k+ZJ- = F(Xk+Zj ’S(Xk+ZJ- )l S’(Xk+Zj )’ S”(Xk+2j )) ’ j:1’2’3'

Theorem 1: Suppose that F e C?([0,b]xRxRxNR) satisfies Lipschitz condition,
and if

h< 233120 (2.14)
279073L
then the spline approximation solution S(x) exists and is uniquely defined for
z,=1/2,z,=2/3,z, =1, where L is a Lipschitz constant for F.

Proof. It is sufficient to prove that the vector C, can be uniquely determined for
arbitrary given S, . Let C},C2 e R?, then using | . ||, from (2.13), we have
Ci=A"S +A'Fland CZ=A"S, +A"'F?
Thus Cland C? can be written in the form
Cy =Qu(Cy1.Ci2:Car Mand CF = Q(C¢; . Cf,.Cisy D)
Applying ||.|l, , Lipschitz condition and using Mathematica, we get
1Q(C) ~QCHI=I (A7Sy + AR~ (A7S, + AR |
= AT R =R <
_ 307 1633 9043
AT 1-1(1296 e 31104 "+ 933120
Graoe™ sz e

9043 | & 51481 | ¢ 298507
h> + h® +
933120 33592320 1410877440

_ 307 1633 9043
<AL (LR + 2t h%).
1296 31104 933120

{l Ci,l _Ck2,1 [+ C;,z _Ckz,z [+ C;,s _Ck2,3 I}

h*)|Ci—Ciy 1+

h*)|C,—Ci, |+

Ls( h7) | Cli,s _Ck2,3 |}

1 279073
SF L(933120 hs){l Cli,l _Ck2,1 | +| CI%,Z _Ck2,2 | +| C&,s _Ck2,3|}
279073
<L hM.{|C: —C2 |+|CL, —C2, |+|CL.-C2.},
(933120 ){l k,1 k,ll | k,2 k,2| | k,3 k,3|}
where
L, =max(L, L, L;), H, =max(H,, H,,H,), forall h<]0,1[, and
H, = 307 5, 1633 ;9043 ho),

1296 31104 933120
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1633 9043
h* + h° +
31104 933120
9043
H, =( h® +
933120
< 279073
933120

51481
33592320
51481 298507
h® + h’
33592320 1410877440

h®, for all h €]0,1[,

H2:(

1

|A™ ||:hi2 const, L=const.L, .

279073
3120
(2.14). Hence there exists a unique C, that satisfies C, =Q,(C,,,C,,,C,;,h) which
may be found by iterations, C** =Q, (C,?,,h), p=0,1,2,... .
The proof of the Theorem 1 is now complete.

Thus, the function Q, defines a contraction mapping if hL <1 which satisfies

Convergence Analysis:

We assume that y(x) e C°[0,1], the unique solution of the Falkner—Skan equation
and S(x) be a spline approximation to y(x), also T =(7,) is a 3-dimensional column
vector. Here, the vector 7, is the local truncation error.

Applying the Spline approximation S(x) on three collocation points
xk+Zj =X +2;h, (j=1,2,3), we approximately put y(xk+zj);S(xk+zj), and

y™(x)=y™ =S™(x,), (m=0....,4), k=0,...,N, for z,=1/2,z,=2/3,z, =1, we obtain
the local truncation error formula:

7. =MC,-Y¥,, (3.1)
where
Vi + 3 yi + Iy = Beyr+ Ly - y(x, +3h)
Po=| v+ By + 2By A+ Ay —y(x +§h) |,
ety Sy ey i v -y ey
b SF Y Ca
M= & &% @ 7| Co=|MC
Y % & h’Cy

On the other hand, from the system (2.13), we get

C.=A'Y, +A'F
where
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64 81 4
2  h? 1
h° 480 729 42
— 1 _ (=430 /29 42
Det(A)= =0, A'=|=20 79 282,
1152 -972 144
|"hz Thz h? |
¥ =5y Y"(X.z,)

Vo= =¥ =300 L o=y () |

yéS) h y(4) W(XKH)
Using Taylor’s expansions for the functions y™(x),m=0,...4 about X, in the

relation (3.2) and substituting into (3.1), we get the local truncation error at the kth step as
follows:

101!%9 y@ ()]
8oy (%) |h®=0(h°) k=0,1,.N  (3.3)

=M(AY, +A F)-T, =| &

8
T]éoy()(xk)

where

y(x) = Z(X IX) Y@ (x)+0(h°), x DX, %]

i=0
Note from the relation (3.3) that the proposed Spline method is exact for expansions

of the solution of degree <7, hence we have || T ||,=N.O(h®)=0(h").

Consequently, we have obtained the following: Let y e C®[0,1] be Lipschitz
continuous, then the spline approximation S(x) converges to the solution y(x) of the
Falkner—Skan problemas h -0 for z,=1/2, z, =2/3, z, =1and

lim S™@e)=y™ (), m=0,.,4, e=01. (3.4)
Furthermore, the convergence order is fifth, i.e., we have

ly™(x)-S™(x)|<C, h*", m=0,..,3. (3.5)
| Algorithm 1 : The Spline Method for solving Falkner—Skan problems
We use the following notations bo=7_ , elfa=« , beta= g, Tk=tx .
INPUTS:

Input (elfa, beta, by, Tk): the boundary conditions and constants.
Input (C1,C,,Cs), the initial approximation vector C = (C,,C,,C,)".

Input((Cl,Cz,C )), the initial approximation vector C= (Cl, 2,CS)T.
Input (N), number of subintervals N.
Input (M), maximum number of iterations M .
Tolerance Tol=0.1E-8; the parameters z1=0.5; z2=2/3;
Step1l Set h=(1)/(N);
ki=1;
Step 2 while (ki <= M) do {0} Steps 3-22.
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Step 3
Begin {The initial conditions}
s0=0;
s1=0;
s2=tk;
s3=Sqr(b0)*(-elfa*s0*s2-beta*(1-s1*s1));
s4=Sqr(b0)*(-elfa*(s1*s2+s0*s3)+2*beta*s1*s2);
z0=0;
z1=0;
z22=1;
23=Sqr(b0)*(-elfa*(z0*s2+s0*z2)+2*beta*z1*s1);
z4=Sqr(b0)*(-elfa*(s3*z0+s2*z1+s1*22+s0*23)+2*beta*(s2*z1+s1*z2));
Step4 forr:=1to N do {1} steps 5-19.
{Spline approximation (2.3a) for the nonlinear system (1.7)}
We set S¢(C)=S"(C)+an:S(C) S™(C)+ An.(1-(S'(C)*))=0.
Step5 k=1;
Step 6 while k <= M do {1} steps 7-11
Step 7 Calculate St (C) and J; (C),
where J¢(C)ij =05, (C)/oC; for 1<i, j <3.
Step 8 Solve the 3x3linear system J, (C)Y =-S, (C).
Step9 Set C=C+Y.
Step 10 if ||Y|| < Tol then
spl[r]=S«(C);
spl1[r]=S"(C);
spl2[r]=S""(C);
Step 11 Set k:=1+k;
{ end while 1}
{Spline approximation (2.6a) for the nonlinear system (1.14)}
We Set S;(C)=Z"(C)+an;Z(C)S(C)-2 fn.Z(C)S'(C)+an;Z(C)S(C)=0
Step 12 k=1;
steps 13 While (k<=m) do {2} steps 14-18.
Step 14 Calculate S,(C) and J, (C),
where J,(C),;=8S,,(C)/oC; for 1<i, j<3.
Step 15 Solve the 3x3linear system J,(C)Y =-S5, (C).
Step 16 Set C=C+Y .
Step 17 if||Y ||< Tol then
x:=z[i]*h;
sU[r]=Z(C);
sUL[r]=Z'(C);
sU2[r]=2"(C);
Step 18 Set k:=k+1;
{ end while 2}

Step 19 Set { Renewing the initial conditions }
s0= S,(C);
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s1=5+(C);
s2=S7(C);
s3=Sqr(b0)*(-elfa*s0* s2-beta*(1-s1*s1));
s4=Sqr(b0)*(-elfa*(s1*s2+s0*s3)+2*beta*s1*s2);
20=2Z(C);
z21=Z°(C);
22=Z2"(C),
z3=Sqr(b0)*(-elfa*(z0*s2+s0*z2)+2*beta*s1*z1);
z4=Sqr(b0)*(-elfa*(s3*z0+s2*z1+s1*z2+s0*z3)+2*beta*(s2*z1+s1*z2));{end for 1}
Step 20 if abs(spl1[l,3]-1)<=tol then
Step 21 forr:=1 to N do {2}
Set x=z[i]*h+(r-1)*h;
X=x*h0;
Spl[r]=Spl[r]*bO0;
Spl2[r]=Spl2[r]/b0;
Output(x,Spl[r],Spl1[r],Spl2[r], Tk, Ki);
{ end for 2}
Output (‘Procedure is complete. ');
STOP.
Step 22 tk:=tk-(spI1[N,3]-1)/sul[N,3];
Ki=ki+1;
{ end while 0}
Step 23 Output (‘Maximum number of iterations exceeded");
{Procedure completed unsuccessfully}
END.

Results and Discussion:

In this section, we utilize Pascal programs to run the Algorithml of the presented
Spline method for the numerical solution of the Falkner—Skan problems in numerous cases.
We show the approximate spline solutions and their derivatives of special flows such as:
Blasius, Pohlhausen, Homann and Hiemenz flows over various intervals. The approximate
spline solutions of the wall shear stress of Falkner—Skan equation over various intervals are
showed. We compute the local errors and the rate of convergence for present spline
method.

In Table 1, we summarize spline approximations of f(r), f'(n)and f"(n) for
Blasius flow (¢ =1, 4=0), with h=0.1, 0<# <7.30.

Comparisons of the values of the solution and its derivatives at 7 =, corresponding
to different 8 <[-0.1988, o[ when « =1 are listed in Table 2.

Table 3 shows comparisons of the wall shear stress f; = f"(0) with N=24, for the
present spline method. The results indicate that all values of f, are agreement with those

reported by Beckett [2], EI-Gindy et al. [4], EI-Hawary [5] and Elbarbary [3].
Fig.1 depicts the spline approximations of df /dzn for special flows: Blasius,

Pohlhausen, Homann and Hiemenz flows over the interval 0 <7 <4, with N=32, h=0.1875.

Fig. 2 plots spline approximations of d2f /d#;?® corresponding to « =1 and different
values for 3, over the interval 0 <7 <8, with N=32, h=0.1875.
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Fig. 3 illustrates spline approximations of df /dzn corresponding to =1 and
different values for g, over the interval 0<7 <6, with N=32, h=0.1875.

Fig. 4 plots spline approximations of f(7) corresponding to « =1 and different
values for 2 €[-0.1988, o[, over the interval 0 <7 <10, with N=40, h=0.25.

Table 1: Spline approximations of the Falkner—Skan boundary-layer equation for Blasius flow

(a=15=0)
f(n) f'(n) f"(n)

n Present Present Present

Kuo[7] Method Kuo[7] Method Kuo[7] Method
0.00 0.000000 | 0.000000000 | 0.000000 | 0.000000000 | 0.469600 | 0.469599988
0.10 0.002348 | 0.002347982 | 0.046959 | 0.046959080 | 0.469563 | 0.469563236
0.20 0.009391 | 0.009391412 | 0.093905 | 0.093905299 | 0.469306 | 0.469306057
0.30 0.021128 | 0.021127536 | 0.140806 | 0.140805619 | 0.468609 | 0.468608782
0.40 0.037549 | 0.037549200 | 0.187605 | 0.187605139 | 0.467254 | 0.467254198
0.50 0.058643 | 0.058642681 | 0.234228 | 0.234227473 | 0.465030 | 0.465030358
0.60 0.084386 | 0.084385571 | 0.280575 | 0.280575459 | 0.461734 | 0.461734432
0.70 0.114745 | 0.114744754 | 0.326532 | 0.326532304 | 0.457178 | 0.457177485
0.80 0.149674 | 0.149674519 | 0.371963 | 0.371963244 | 0.451190 | 0.451190021
0.90 0.189115 | 0.189114871 | 0.416718 | 0.416717789 | 0.443628 | 0.443628017
1.00 0.232990 | 0.232990096 | 0.460633 | 0.460632577 | 0.434379 | 0.434379146
150 0.515031 | 0.515031531 | 0.661474 | 0.661473834 | 0.361804 | 0.361804520
2.00 0.886797 | 0.886796828 | 0.816695 | 0.816694624 | 0.255669 | 0.255669173
2.40 1.231528 | 1.231527622 | 0.901065 | 0.901065445 | 0.167560 | 0.167560358
3.00 1.795568 | 1.795567915 | 0.969055 | 0.969054607 | 0.067710 | 0.067710344
3.40 2.187467 | 2.187467253 | 0.987970 | 0.987970463 | 0.030535 | 0.030535263
3.80 2.584499 | 2.584498788 | 0.995944 | 0.995944282 | 0.030535 | 0.011758707
4.00 2.783886 | 2.783886463 | 0.997770 | 0.997770098 | 0.006874 | 0.006874106
4.40 3.183383 | 3.183382702 | 0.999397 | 0.999396613 | 0.002084 | 0.002084083
4.80 3.583254 | 3.583254069 | 0.999859 | 0.999859402 | 0.000538 | 0.000538487
5.00 3.783235 | 3.783234525 | 0.999936 | 0.999935865 | 0.000258 | 0.000257782
730 | --meee- 6.083219379 |  --------- 1.000000000 |  --------- 0.000000003

Table 2: Comparisons of the values of the solution and its derivatives at 17 =177,
corresponding to different 3 e[—0.1988, oof when o =1.
Iterative Method [13] Present Method , N=40
B f(7) f'(m) () f(7) f'(m) ()

2 4.232790 | 1.000000 | 0.000001 | 6.302566325 | 1.0000000019 | 0.0000000011
1 4.560670 | 1.000000 | 0.000001 | 7.352099526 | 1.0000000000 | 0.0000000000
0.5 4.982643 | 1.000000 | 0.000000 | 7.195451385 | 1.0000000000 | 0.0000000000
0.0 5.247298 | 1.000000 | 0.000000 | 6.783219378 | 1.0000000000 | 0.0000000000
-0.1 5.313184 | 1.000000 | 0.000000 | 6.557303204 | 1.0000000000 | 0.0000000002
-0.15 | 5.343293 | 1.000000 | 0.000000 | 6.353030458 | 1.0000000000 | 0.0000000010
-0.18 | 5.375395 | 1.000000 | 0.000000 | 6.128424599 | 1.0000000009 | 0.0000000045
-0.1988 | 5.378092 | 1.000000 | 0.000000 | 5.667023693 | 1.0000000000 | 0.0000000730
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Table 3: Comparison of the wall shear stress f .
Beckett | EI-Gindy | El-Hawary Elbarbary Present
n. | a | B 2] et al. [4] [5] [3] Method
1 15 | 4.4923 4.4905 44916430 | 4.49148688 | 4.491486878
1 10 | 3.6756 3.6746 3.6752130 | 3.67523431 | 3.675234306
31 | 1 2 1.6874 1.7741 1.6872256 | 1.68722586 | 1.687225863
37 | 1 | 05 | 092778 0.694 0.9278054 | 0.92780539 | 0.927805388
44 | 1 | 03 | - 0.5332 0.7747827 | 0.77478274 | 0.774782741
69 | 1 | 0.0 | 04697 | - 0.4696000 | 0.46960012 | 0.469599992

—B8— Blasius flow
= Pohlhausen flow
—O— Homann flow

—a— Hiemenz flow

0.5

1 15

2

25 3

: n

3.5 4

Fig.1. Spline approximations of df /d7 for special flows: Blasius, Pohlhausen,
Homann and Hiemenz flows over the interval 0 <7 <4, with N=32, h=0.1875 .
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0.00
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Fig. 2. Spline approximations of d2 f /d7?corresponding to o =1
and different values for £, with N=32, h=0.1875.
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0.6 1 / /
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0.4 1 1 /
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03d [ /
024/
0.1
0 - T T T T T T |77
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Fig. 3. spline approximations of df /d7 correspondingto o =1
and different values for 3, with N=32, h=0.1875.
10.0 f(n)
9.0 -
8.0 T T B:2 O
7.0 B=1.0
6.0 1 - - - -B=0.50
5.0 - ——B=0.00
404 LTS x B=-0.10
3.0 - —+—B=-0.15
2.0 + ——B=-0.1988
1.0 ~
0.0 ’.‘**% T T T T T l77
0 2 4 6 8 10 12

Fig. 4. Spline approximations of f (77) correspondingto ¢ =1
and different values for /, with N=40, h=0.25.

Error Estimates: We solve the Falkner-Skan problem (case 1: Blasius flow) for
h=7,/N, with prescribed error tolerance ¢£=10"°. The nodal difference error E,', is
defined by:

EV SN -S|, k=1,...N

where S.' is the spline approximation at 7, by the present spline method. The
experimental nodal rate of convergence is given by:

Rate = Log, (EM /E*")
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Table 4 shows the local errors at the kth step for present spline method, with
n,, =10, N=40. By solving the Falkner—Skan problem for 7, =10, N=20, 40, 80, the order

of convergence for the proposed spline method is computed in Table 5.

Table 4: The local errors for Falkner—Skan problem by presented spline method when, N=40, h=0.25

k EkN E,QN E;’N E,Q"N
1 1.5049300E-11 2.5670489E-10 5.1841198E-11 6.30250018E-12
2 9.2256897E-11 4.8180482E-10 2.0463686E-11 4.172310066-11
4 3.6243369E-10 5.0522425E-10 2.4101609E-11 2.13617499E-10
6 4.9749360E-10 2.5102054E-10 7.5124273E-11 5.6707000E-10
8 2.9558578E-10 5.7389116E-10 5.661603E-10 5.77756509E-10
10 1.5825208E-10 2.6284397E-10 9.7884370E-10 1.271246219E-9
15 5.2386895E-10 1.6916601E-10 6.0254020E-10 1.534260698E-9
20 4.0017767E-10 | 1.90993887E-11 | 5.9777899E-11 2.26051999E-10
25 4.2928150E-10 6.3664629E-12 2.852200E-12 1.43556899E-10
30 4.3655746E-10 9.0949470E-13 2.4640000E-13 | 1.548499999E-12
35 4.3655746E-10 9.0949470E-13 2.9999999E-16 1.89999999E-16
40 4.3655746E-10 9.0949470E-13 0.0 0.0
Table 5: The rate of convergence for presented spline method , with N=20.

k E) S} —-S2Y EXN 5S2¥ —S;" | | Rate of convergence

1 3.503089305 E-9 9.225689657 E-11 5.24683

2 1.886564863 E-8 3.624336942 E-10 5.70190

3 2.947035682 E-8 4.974936018 E-10 5.88844

4 1.986154529 E-8 2.955857781 E-10 6.07026

5 8.756614988 E-9 1582520781 E-10 5.79008

6 1.832086127 E-8 3.583409125 E-10 5.67601

7 3.078821464 E-8 5.275069270 E-10 5.86704

8 2.980596037 E-8 4.874891601 E-10 5.93409

9 2.453816705 E-8 4.147295840 E-10 5.88671

10 2.290107659 E-8 4.001776687 E-10 5.83863

11 2.349406713 E-8 4.220055416 E-10 5.79889

12 2.409069566 E-8 4.292814992 E-10 5.81041

13 2.430897438 E-8 4.292814992 E-10 5.82342

14 2.435263013 E-8 4.365574568 E-10 5.80176

15 2.435990609 E-8 4.365574568 E-10 5.80219

16 2.4359906092 E-8 4.365574568 E-10 5.80219

17 2.4359906092 E-8 4.365574568 E-10 5.80219

18 2.4359906092 E-8 4.365574568 E-10 5.80219

19 2.4359906092 E-8 4.365574568 E-10 5.80219

20 2.4359906092 E-8 4.365574568 E-10 5.80219

In Tables 1,2, we compare our results of the spline method to the results obtained [2-
5,7,13]. In Table 1, we find that the spline solution f (r7) and its derivatives of the Blasius
flow problem are better than those obtained by the KUO method [7]. Table 2 shows that
the spline solution to f'(r,) is at least of eight-decimal-place accuracy, and the spline

solution to f"(r,) is at least of seven-decimal-place accuracy, while the results of

102



Tishreen University Journal. Bas. Sciences Series 2010 (3) saxl (32) alaal) L] aslell @ (0850 daals Ao

iterative method by Zhang [13] is at least of six and five decimal-place accuracy,
respectively. Also, comparisons of the wall shear stress f; between our results and other

results [2-5] are summarized in Tables 3. The Figs. 1-4, illustrate that the suggested
technique is quite reliable. Tables 4-5, come into view that the maximum local error of

spline method is 1.6x107° for each step h=0.25, moreover, the rate of convergence is at
least five.

Conclusion:

We have presented an iterative method based on polynomial splines for solving the
Falkner—Skan problems over semi-infinite intervals. This proposed method enables us to
approximate the solution and its derivatives of the problem at every point of the range of
integration. The collocation points applied into the polynomial spline function to be
satisfied by parameters z,=1/2,z, =2/3,z, =1 improve the accuracy of the scheme,

which are evident form the numerical results given in Tables 1-4. The results obtained are
very encouraging and the spline method performs better than the previous methods in [2-
5,7,13] . Finally, since the applicability and efficiency of the presented spline method, we
recommend its using for solving Falkner—Skan problems and all nonlinear third-order
boundary-value problems.
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