
222

 8332(4(العدد)03المجمد) العموم الأساسيةسمسمة -مجمة جامعة تشرين لمبحوث والدراسات العممية

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (30) No. (4) 2008

Comparison of some Preconditioned Krylov

 Methods for Solving Sparse Non-symmetric

Linear Systems of Equations

 Dr. Ahmad Al-Kurdi


(Received 24 / 1 / 2008. Accepted 26/5/2008)

 ABSTRACT 

 Large sparse non-symmetric linear systems of equations often occur in many

scientific and engineering applications. In this paper, we present a comparative study of

some preconditioned Krylov iterative methods, namely CGS, Bi-CGSTAB, TFQMR and

GMRES for solving such systems. To demonstrate their efficiency, we test and compare

the numerical implementations of these methods on five numerical examples. The

preconditioners considered here are incomplete LU-decomposition (ILU), Symmetric

Successive Over Relaxation (SSOR), and Alternating Direction Implicit (ADI). The ILU

preconditioner is shown to be extremely effective in achieving optimal convergence rates

for the class of problems considered here. Finally, our results show that the GMRES is the

best among the considered iterative methods.

Keywords: Nonsymmetric linear system, Krylov subspace methods, preconditioning.


Assistant Professor, Department of Mathematics, Faculty of Science, Al-Baath University, Homs,

Syria.

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 222

 8332(4(العدد)03المجمد) العموم الأساسيةسمسمة -مجمة جامعة تشرين لمبحوث والدراسات العممية

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (30) No. (4) 2008

 مقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية
 غير المتناظرة كثيرة الأصفار

 الدكتور أحمد الكردي

 (86/5/2008ل لمنشر في ب ق . 8332/ 1/ 84تاريخ الإيداع)

 الممخّص 

العديرررد مررر فررر مراترررل عميرررا مررر ، كثيررررة الأصرررفار ، متنررراظرة ال، غيرررر خطيرررة العرررادلات المجمرررل تظهرررر
دراسرررة مقارنرررة لررربعض طرائرررق كريمررروف التكراريرررة المسررررعة و ررر فررر رررما العمرررل، نجرررري العمميرررة والهندسررريةتطبيقرررات ال
المسرررعات ل المعررادلات لحررل ررما النرروع مرر جمرر GMRES و TFQMR وBi-CGSTAB وCGS طرائررق ال

مسررررع و (SSORالمسررررع فررروق الاسرررترخاي المتترررال التنررراظري (وILUغيرررر الترررا LU ررر تحميرررل نررراالمدروسرررة
فعرال للرح حرد كبيرر فر لنجرات معردلات تقرارل مثمرح مر ILU تبري ن المسررع (ADIالاتجا ات الضمنية المتناوبرة

 رر الأفضررل برري جميرر كانررت GMRES(10)برري تجاربنررا ن طريقررةنخيرررا، تنجررل صررف المسررائل المدروسررة نررا
 الطرائق التكرارية المدروسة

 ، التسري ائق فضاي كريموف، طر خطية غير متناظرة: جممة مفتاحيةالكممات ال

 سورية. –حمص –جامعة البعث –كمية العموم -قسم الرياضيات -مدرس *

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 222

Introduction:
 Consider the linear system of equations

bAx  (1)

where A is a large, non-singular, sparse, non-symmetric matrix of order nn and

b is a given vector of order n . Such systems often occur in many scientific and

engineering applications [1]. For such systems iterative methods are usually preferred to

direct methods which are expensive both in memory and computing requirements. There

are now quite a number of Krylov subspace methods available for solving (1), e.g., CGS,

Bi-CGSTAB, TFQMR and GMRES; for more details see [1,2] and references therein. In

order to be effective, these methods must be combined with a good preconditioner, and it is

generally agreed that the choice of the preconditioner is even more crucial than the choice

of the Krylov iteration method. The preconditioner application in the iteration loop is the

most delicate part of the iterative process. When the iterative method is based on Krylov

subspaces, there is a need to use preconditioning techniques in order to achieve

convergence in a reasonable number of iteration steps.

 Since using a preconditioner in an iterative method incurs some extra cost, both

initially for the setup, and per iteration for applying it, there is a trade-off between the

constructing cost and applying the preconditioner, and the gain in convergence speed.

Certain preconditioners need little or no construction phase at all (for instance SSOR

preconditioner) but for others, such as incomplete factorizations, there can be substantial

work involved. Broad classes of preconditioners are based on incomplete factorization of

the coefficient matrix A .

 In this work, we have focused our attention to make a detail comparative study of

the preconditioned CGS, Bi-CGSTAB, TFQMR and GMRES for solving (1). The

considered preconditioners are ILU(m) (incomplete LU decomposition of level m) [3],

SSOR and ADI [1]. The performance of each iterative method combined with one of the

mentioned preconditioners is measured in terms of CPU time and number of iterations.

Importance and Parts of the Research:
 Systems of linear equations given in (1) are frequently encountered in almost all

the scientific and engineering applications such as physics, mechanics, signal processing

and other applications of real life problems. For these reason we attempt to develop

iterative methods for solving such systems of linear equations.

1. Preconditioned Krylov subspace methods

 The spectrum of the coefficient matrix A governs the rate of convergence of any

iterative method. By the use of preconditioning, this spectrum can be narrowed which then

promises much better convergence properties for iterative methods. As will be seen, the

choice of a preconditioner is crucial for the behavior of any iterative method, since it

influences the speed of convergence and their stability.

 Let 0x be an arbitrary initial guess for the linear system given by (1) and let

00 Axbr  be the corresponding residual vector. A Krylov subspace method is an

iterative scheme, which for an arbitrary choice of 0x , seeks approximate solutions of the

form  0k0k r,AKxx  , where  0k r,AK is the Krylov subspace

   o
1k

0
2

000k rA,...,rA,Ar,rspanr,AK  . The motivation for preconditioning is to speed up

the convergence of an iterative solution of (1). Usually a preconditioner 1M or 2M is used

to multiply (1) on the left / right respectively so that the preconditioned system is

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 203

  bMxMAMM
1

1
1

2
1

2
1

1


 (2)

where 1M and 2M are left and right preconditioning matrices respectively. In this

work, the GMRES method is used with the right preconditioners.

2. Storage scheme

 A short representation of storage technique described here is called as compressed

storage scheme [3]. The storage format is the most general; it makes absolutely no

assumptions about the sparsity structures of the matrix, and it does not store any

unnecessary elements. Storing given matrix A with compressed storage scheme requires

three one dimensional arrays VA, JA, and IA of length na, na and n+1, where n is the

number of rows and na is the total number of non-zero elements in the matrix A . The

array VA contains the non-zero elements of A stored row-by-row, JA contains the column

indices which corresponds to the non-zero elements in the array VA, and IA contains n+1

pointers which delimit the rows of non-zero elements in the array VA, as illustrated below:

For example, let A be a square matrix of order 5.

























5552

454441

33

232221

1311

a00a0

aa00a

00a00

00aaa

00a0a

A

 (3)

The arrays VA , JA and IA are



12107631

52541332131

5

5552

4

454441

3

33

2

232221

1

1311







IA

JA

aaaaaaaaaaaVA

rowrowrowrowrow 

 (4)

By convention, we define IA[n+1]= 1na  . The storage savings for this approach is

significant. Instead of storing 2n elements, we need only 2 1na n  storage locations.

The matrix (3) can not be factored, by using the above storage scheme, “in place” unless

fill-ins are accounted for when storage is created. For example, when (3) is factored, non-

zero numbers are assigned to 42a and 53a , but neither of these elements appears in (4) as

illustrated, i.e., there is need to reallocating storage to make room for the fill-ins. In this

work we present a good choice for predicting fill-ins, using powers of a Boolean matrix.

3. Preconditioning

 In this section, we discuss the use of preconditioning with the aim of reducing the

iteration steps required to obtain a good approximation to the solution of (1). It is clear that

the preconditioned iterative method to be successful, it is important that we choose the

correct preconditioner. We want to choose a preconditioner so that condition number

  1AMk 1  . The job of choosing the correct preconditioner is not easy. There are many

ways to choose a preconditioner. Usually, each of these different preconditioners works

best in some situation. All of these preconditioners approximate 1A to some degree. If we

could choose a matrix M such that IAM 1  , we could have   1AMk 1  and the

solution is attained in one step. Of course, we can not do this, because amount of work

involved in getting 1A will be excessively high in practical circumstances. Consequently,

preconditioning must be regarded as a trade off between the cost of constructing and

manipulating the preconditioner, and the acceleration of the iterative process. Most

preconditioners take in their application an amount of work proportional to the number of

variables. This implies that they multiply the work per iteration by a constant factor. On

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 202

the other hand, the number of iterations as a function of the matrix size is usually improved

by a constant. Certain preconditioners are able to improve on this situation, most notably of

them is the incomplete LU-decomposition.

(1). Incomplete LU Preconditioner (ILU)

 Incomplete LU decomposition (ILU) is based on the LU-decomposition of the

coefficient matrix A . In constructing an ILU(m) (ILU of level m), we use The Powers of a

Boolean Matrix Strategy (PBS) for determining the pattern of non-zero elements of the

factors LU of a given matrix A ; for more details, we refer the reader to [3].

Algorithm 1. PBS (The Powers of a Boolean Matrix Strategy)

Step 1.

 Form the matrix  ijbB  as



 


otherwise,0

0aif,1
b

ij
ij

Step 2

 Compute  1m,B
m2  .

 If ,BB
1mm 22 

 then

 Form the set    
}1b:j,i{P

m2
ij  .

 Else 1mm  , and go to Step 2.

From the Algorithm 1, it follows that the sparsity pattern of LUM  is

approximately equal to that of
m2B . At any given iteration, if the calculated Boolean

matrix agrees with the matrix at the previous iteration, i.e. ,BB 1mm  then the process

has converged and we have the sparsity pattern of the LU factors. If 1mm BB  , we get

the complete LU factors. Sparse LU - decomposition method, may give the solution.

However, using the complete LU factors (when 1mm BB ) is not desirable because it

would defeat the purpose of using an iterative method. Since the preconditioner can be

improved by allowing more fill-ins and its effectiveness depends on how well 1M

approximates 1A , the Algorithm 1 can be terminated at a level m such that there is trade -

off between the computational requirements (both in terms of memory and CPU time) and

reducing the number of iterations. We show the efficiency of this method in section of

numerical experiments by taking numerical examples.

 Once the non-zero structure of L and U matrices is obtained using Algorithm 1,

non-zero entries are then obtained by Doolittle's method [1], where all the diagonal entries

of L are 1.

LUA  gives
 





j,imin

1k

kjikij ula (5)

This gives the following explicit formulas for ijl and iju :

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 202

ki,ulau

ki,
u

ula

l

1i

1j

jkijikik

kk

1k

1j

jkijik

ik




















 (6)

While making an incomplete LU – factorization, we need to store only non –zero

entries of L and U . We define an extra array Diag [1…n] which points to the diagonal

elements of U in the array VA. The non –zero structure P of L and U is stored in JA,

IA and VA containing 0a ij  as well as fill-ins. The following algorithm calculates the

incomplete decomposition. The Boolean variable revise is false for the standard

incomplete decomposition and true for the modified version such that row sums of the rest

matrix LUAR  are equal to zero. The array Point [1…n] is an array of integers which

points to the entries in L and U of row i.

Algorithm 2. ILU (The incomplete LU- decomposition)

For i = 1 To n Do

 Point [i] = 0;

For i = 2 To n Do

 {

 For v = IA [i]+1 To IA [i+1]-1 Do

 Point [JA [v]] = v;

For v = IA [i] To Diag [i]-1 Do

 {

 j = JA [v] ;

 VA [v] = VA [v] / VA [Diag [j]] ;

 For w = Diag [j]+1 To IA [j+1] -1 Do

 {

 k = Point [JA [w]] ;

 If (k>0) then

 VA [k] = VA [k] – VA [v] * VA [w] ;

 Else

 If (revised) then

 VA [Diag [i]] =VA [Diag [i]] –VA [v]*VA [w] ;

 }//End For w.

 }//End For v.

 For v = IA [i]+1 To IA [i+1]-1 Do

 Point [JA [v]] = 0 ;

 }//End For i.

 The choice of P is extremely important. In practice, the non-zero pattern of L and

U is often taken the same as that of the original matrix. This has advantage that no

additional storage space is needed for the non-zero structure of the incomplete

decomposition. The ILU(m) decomposition is based on the structural strategy outlined

above for accepting fill-ins only to a certain level m. A level function is used in incomplete

factorization to control the number of fill elements.

The Algorithm 2 for computing L and U with PBS does produce an optimal

preconditioner.

(2). Symmetric Successive Over Relaxation (SSOR)

 Iterative methods that can be expressed in the simple form

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 200

CNxx l1l  (7)

where neither N nor C depends upon the iteration count l , are called stationary

iterative methods. The stationary iterative methods, e.g., SSOR, and ADI, are rarely

competitive with Krylov iterative methods. So, all these methods are often employed as

preconditioners for nonstationery iterative methods. Since the SSOR scheme is a potential

solver for the problem, it should be clear that the SSOR scheme would provide us with an

approximation of 1A . Let

AAA UDLA  (8)

be the splitting of A into strictly lower, diagonal, and strictly upper triangular

matrices of A . To find a preconditioner, we must find a matrix M as approximation to A .

The residual correction method is to approximate 1A and define the iteration

ll1l Nruu  (9)

where ll Aubr  and N is some approximation to 1A .

If      1
AAA

1
AA LDDUD2N


 , we get the Symmetric Successive Over

Relaxation scheme (SSOR), where(omega) is a free parameter. Thus, when apply SSOR,

we are solving the equation  
 

     ll1lAA
1

AAAl1l
1 ruuUDDLD

2

1
uuN 


 




 .

SSOR preconditioner can be used to precondition Krylov subspace methods, such as CGS,

Bi-CGSTAB, TFQMR and GMRES and it requires no construction time.

(3). Alternative Direction Implicit Preconditioner (ADI)

 The Alternating Direction Implicit (ADI) method is one of the stationary iterative

methods used as a preconditioner for nonsymmetric systems. Let (8) be the splitting of the

coefficient matrix A . If     1
AAA

1
AA LDDUDN


 , we get the ADI scheme,

where(omega) is a free parameter. As before, N is some approximation to 1A and AL ,

AD , and AU represent the lower triangular, diagonal, and upper triangular parts of

A respectively. The matrix N is a good choice because it is lower and upper triangular

matrices. Thus, when apply ADI, we are solving the equation

       ll1lAA
1

AAAl1l
1 ruuUDDLD

1
uuN 


 




 . The ADI is probably best only

considered as a preconditioner in the Krylov subspace methods.

(4). The Preconditioning Step

 The preconditioners M considered in this work are ILU, SSOR and ADI. It is

important that 1M is never explicitly computed. Alternatively, we have

vMzvMz 1   (10)

The preconditioning step (10) is an important step in any preconditioned iterative

method. We now describe the solution of (10) for different cases.

(I). Case 1. The Preconditioner LUM  .

The system (10) can be solved using CGS, Bi-CGSTAB and GMRES by the

following two steps:

Step 1: Forward substitution in LY b .

Step 2: Back substitution in UX Y .

where the Steps 1 and 2 are given in the Algorithms 3 and 4 respectively.

Algorithm 3. Forward Substitution.

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 204

Y[1] = b [1] ;

For i = 2 To n Do

 {

 sum = 0 ;

 For j = IA [i] To Diag [i]-1 Do

 sum= sum + VA [j] * Y[JA [j]] ;

 Y[i] = b [i] - sum ;

 }//End For i.

Algorithm 4. Back Substitution.

X [n] = Y [n] / VA [Diag [n]] ;

For i = n-1 Down To 1 Do

 {

 sum1 = 0 ;

 For j = Diag [i] To IA [i+1] -1 Do

 sum1 = sum1 + VA [j] * X [JA [j]] ;

 X[i] = (Y [i] – sum1) / VA [Diag [i]] ;

 }//End For i.

 The system (2) can be solved using TFQMR as follows. Let M be a given

nonsingular nn matrix which approximates in some sense the coefficient matrix A of

(1). Moreover, assume that M is decomposed in the form 21MMM  . Instead of solving the

original system (1), we apply the TFQMR algorithm to the equivalent linear system

byA  , where   xMy,AxbMb,AMMA 20
1

1
1

2
1

1   . Here 0x denotes some

initial guess for the solution of (1). The iterates ky and residual vector kk yAbr  for

the preconditioned system byA  are transformed back into the corresponding qualities

for the original system by setting k
1

2k yMx  and k1k rMr  . For a case 1, the system (2)

can be solved using TFQMR by taking LM1  and UM2  in 21MMM  . Thus, the

system (10) can be solved by the Algorithm 3 (LM1 ) and the Algorithm 4 (UM2 ).

The preconditioning LUM  involves writing A as RLUA  , with R as error term.

However, the size of the entries in the error matrix for ILU(m) decreases as m increases.

When solving the system using the splitting RLUA  , we consider the

system     bLUAxLU
11 

 . The preconditioned matrix   ALU
1

 has to resemble the

identity matrix I as closely as possible. Since

         RLUIRLULUALU
111 

 , then the matrix   RLU
1

 should be as small

as possible in some sense. We give three Theorems which state that   1
LU


 is a proper

approximation to 1A if and only if   RLU
1

 is sufficiently small for some matrix norm

. .

Theorem 1. Suppose the product LU is nonsingular and RLU  is a splitting of the

nonsingular nn matrix A and the product LU is nonsingular. Then

 

 

 
  RLU

A

ALU

Acond

RLU
1

1

111










 (11)

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 202

where   1A.AAcond  the condition number of A , and LU is the ILU(m)

factorization.

Proof.

          ALUAALUIALULURLU
11111 



   
 

1

1

11

111
AA

A

ALU
ALUARLU 










by dividing the left and the right-hand side by 1. AA one obtains the first

inequality of (11). The second inequality follows from th following:

    
    

    1111

1111

111













ARLULUA

LUAARLU

ALUARLU

After division by 1A the desired inequality is obtained. 

Theorem 2. If x is the solution of (1) and x~ satisfies bx~LU  . Then

  RLU
x

x~x 1



 (12)

Proof. We know that     AxLUAbLUbAx~x
1111   . But

          ALUAALUIALULURLU
11111 



Thus, we have   RxLUx~x
1

 . Taking the norm leads to the desired.

Theorem 3. Suppose RLU  is a splitting of the nonsingular nn matrix A and

1RA 1 
. Then

  
RA1

RA1
ALUcond

1

1

1












where LU is the ILU(m) factorization.

Proof. Suppose LUx equals the null vector 0.

    xRAxxRxA0xRAI0xRA0LUx 111  

Because 1RA 1 
 this implies that x equals 0 so 0x  . This proves that LU

is non-singular.

       

     RA1RAIRAIRAI

RAIcondARAcondALUcond

111111

1111















 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 202

By a Theorem of Atkinson [4]  
RA1

1
RAI

1

11






 . This completes the

proof.

 The Theorem 3 states that we can make R as small as possible and this will have

a positive effect on the condition of   ALU
1

.

(II). Case 2. The Preconditioner M = SSOR and ADI.

 The preconditioning step in the CGS, Bi-CGSTAB and GMRES methods involves

the preconditioner SSOR is the step (10). Hence, we must solve the equation

 
    vzUDDLD

2

1
Mz AA

1
AAA 





. The solution to this equation can be

expressed as

   

  z~DzUD

v2z~LD

AAA

AA




 (13)

The speed of convergence of SSOR depends critically on  ; the optimal value for 

may be estimated from the spectral radius of the Jacobi iteration matrix

 AA
1

AJ ULDR   .

Similarly, The preconditioning step in the CGS, Bi-CGSTAB and GMRES that

involves the preconditioner ADI is the step (10). Hence, we must solve the equation

    vzUDDLD
1

Mz AA
1

AAA 





. The solution to this equation can be expressed

as

 

  z~DzUD

vz~LD

AAA

AA




 (14)

The systems (13) and (14) can be solved by using Algorithm 3 and Algorithm 4

respectively because AA LD  and AA UD  are lower and upper triangular matrices

respectively.

 The optimal value for  is given by

 J121

2


 (15)

where J is the maximum eigenvalue of the matrix JR [5]. Optimum convergence

rate may be achieved for a value of relaxation factor  selected for various computer runs,

and no economical expressions for estimating  would be suggested. In the present work,

the chosen value of  is obtained by the procedure explained in [5].

Note. The preconditioning step in the TFQMR that involves the preconditioners

SSOR or ADI is the step (10). In the case SSOR is preconditioner, we have

 
   AA

1
A2AA1 UDDM,LD

2

1
M 


 

Similarly, in the case ADI is preconditioner, we have

   AA
1

A2AA1 UDDM,LD
1

M 


 

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 202

4. Numerical Experiments

 This Section compares the numerical efficiency of the ILU(m) preconditioner with

SSOR and ADI. Different implementations of the CGS, Bi-CGSTAB, TFQMR and

GMRES(10) will be compared in terms of CPU times and number of iterations. The

iterative methods have been implemented as C++ codes using double precision accuracy.

The five problems reported herein were solved on an IBM Compatible PC with Pentium IV

processor (512 RAM). For our test runs, we always chose 0x as initial guess. For all tests,

the right-hand side b was set to Ax , where  T1,...,1,1x  . The iterations were stopped as

soon as 8

0

l
10

r

r  . Finally, the convergence plots for the residual norms, in a

logarithmic scale, versus the iteration number are given.

Results and Discussions:
 In this Section, we introduce some examples to show the efficiency of the

suggested direct and iterative methods for solving (1).

Example 1 [2]. Let us consider the matrix of size 1000n 











































a1

1a1

...

...

...

1a1

1a1

1a

A

The example is studied here to give due importance to GMRES(10) when it is used

with a suitable preconditioner like ILU. Results are given in the Table (1), which lists the

number of iterations, the solution CPU time in seconds and the relative residual error. It is

interesting to note that the ILU preconditioned GMRES(10) and Bi-CGSTAB do not

stagnate and produce very good results. It has been found that the performance of the ILU

preconditioned GMRES(10) is the best, where the solution is given in two steps. However,

the ILU preconditioned CGS and TFQMR algorithms stagnate and do not show any sign of

convergence. Similarly when we use SSOR and ADI preconditioners, all proposed iterative

methods get stagnated and do not converge. In order to show the convergence

characteristics of the iterative solution methods, Fig. (1) presents the evolution of the

relative residual norm for CGS, Bi-CGSTAB, TFQMR and GMRES(10) with ILU

preconditioner. It is interesting to note that while the CGS and TFQMR are stagnating the

GMRES(10) and Bi-CGSTAB residuals are decreasing.

Example 2 [3]. Consider the tridiagonal square matrix of size 1000n  .



































1.52

31.52

...

...

...

31.52

31.52

31.5

A

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 202

 This example is chosen here to show that the performance of ADI preconditioner is

better than that obtained by SSOR in all considered methods. Table (2) presents, under the

same headings as Table (1), the relative residual error, the solution iterations and CPU time

in seconds of this problem. Here, the performances of the ILU and ADI preconditioners are

better than that one of SSOR in all methods considered in this work. The performance of

SSOR preconditioned Bi-CGSTAB is not good in comparison to the other methods. The

preconditioned GMRES(10) algorithm shows the best performance, with a speed up

against the Bi-CGSTAB of about 2. Specific comparison shows for the iterative methods

considered with the ILU preconditioner (or ADI) have an iteration number of the order of

one-two to one–third of that with SSOR preconditioner. In Fig. (2) (for SSOR) and Fig. (3)

(for ADI), we show the convergence curve for the considered methods. As the plot

indicates, the convergence is faster with the GMRES(10).

Example 3 [1]. Let A is a 200200 Toeplitz matrix of the form













































11

111

1111

1....

0.....

0.11111

0.011111

0..01111

A

Table (3) presents the solution CPU time in seconds, number of iterations and the

relative error in getting the solution of (1). This example is given here to show that the

performances of ADI and SSOR preconditioners approximately are the same in all

considered methods. Again, the performance of the ILU preconditioned GMRES(10) is

much better than that of the other methods where the solution is given in one step. Specific

comparison shows that for the considered iterative methods with ILU preconditioner have

an iteration number of the order of one-fifth to on- sixth of that with SSOR (or ADI). But

the convergence is faster with the GMRES(10). Finally, Fig. (4) (for SSOR) and Fig. (5)

(for ADI) show the evolution of the relative residual norms for iterative methods. It is

interesting to note that while the CGS and TFQMR residuals present oscillations the

GMRES(10) residuals are monotonically decreasing.

Example 4 [3]. The matrix A is given by the block tridiagonal matrix
4

4

.

.

.

4

4

E I

I E I

A E

I E I

I E



 

 



   
   
 
   
   
   

    
   
   

    
      

and  1,1 . The matrices represent the 5- point discretization of the

operator
xy

2

x

2
22 












 on a rectangular region. Experiments are done for the matrix A

of size n , where 400n  ,   20Edimn0  , 1920na  . Computations are done for

5.0 . Table (4) and Table (5) list the non-zero entries and fill-ins in constructing L and

U, the number of iterations, solution CPU time in seconds and the relative residual error.

From the table, it has been seen that the performance of the ILU(2) preconditioner in the

GMRES(10) method is the best. The solution is given in one step (ILU(2)) and two steps

(ILU(1)). Increasing m for an ILU(m) factorization reduces the total cost of finding an

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 202

accurate solution (at least for small m). The performance of SSOR and ADI preconditioned

iterative methods is much better than that obtained by ILU(0). But the performance of ADI

preconditioner is better than SSOR in all considered iterative methods. The ADI and SSOR

preconditioned GMRES(10) algorithm is two times faster than CGS, Bi-CGSTAB and

TFQMR. However, the performance of the preconditioned GMRES(10) is the best among

the considered iterative methods. The number of iterations by using GMRES(10) is much

less. Finally, in order to show the convergence characteristics of the proposed iterative

methods. Fig. (6) (for ILU(0)), Fig. (7) (for ILU(1)), Fig. (8) (for SSOR), and Fig. (9) (for

ADI) show the relative residual norms for the iterative methods, where again the good

properties of GMRES(10) can be seen.

Example 5 [3]. The matrix A is given by the block tridiagonal matrix

1

2 1

1 2

2 1

2

.

, ,.

.

E D a b

D E D a b

A D D

D E D a b

D E a b

     
     
     
     
     

       
     
     
     
     

    

and  1,1 and 11 1b,1a  , E is same as defined in Example 4.

The matrix A represents the 5- point discretization of the operator
yxy

2

x

2
22 



















on a rectangular region. We have chosen the values of 5.2 and 0.21  , where

  1920na,400n,20Edimn0  . Table (6) and Table (7) list, under the same heading as

Table (4) and Table (5), the non-zero entries and fill-ins in constructing L and U

decomposition, solution CPU time in seconds, iteration number and the relative residual

errors. From the tables, it has been seen that the performance of the ILU(m) (m=1,2) in the

GMRES(10) method is the best. The number of iterations by GMRES(10) solver is much

less. The solution is given in two steps (ILU(1)) or one step (ILU(2)). In this example, the

performance of ILU(0) is better than that obtained by SSOR and ADI in CGS, Bi-

CGSTAB, and TFQMR. The performance of the ADI preconditioner is better than the

SSOR preconditioner in CGS, Bi-CGSTAB and TFQMR. The ADI and SSOR

preconditioned GMRES(10) algorithm is 2 times faster than CGS, Bi-CGSTAB and

TFQMR. Specific comparisons show that for the considered methods with ADI (or SSOR)

have an iteration number of the order of one- fifth to one-sixth with GMRES(10). Finally,

in order to show the convergence characteristics of the proposed iterative solution

methods. Fig. (10) (for ILU(0)), Fig. (11) (for ILU(1)), Fig. (12) (for SSOR) and Fig. (13)

(for ADI) show the relative residual norms for the iterative methods. Again the good

properties of GMRES(10) can be seen.

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 243

Table (1). No. of Iterations, CPU time and R. Residual Norms for Example1, 95.0 .

Method Precond. Non-zeros

& fill-ins

No. of

Iteration

CPU

time

Relative

Residual Norms

CGS ILU

SSOR

ADI

1980

4753

6375

-

-

-

-

-

-

-

-

-

Bi-CGSTAB ILU

SSOR

ADI

1980

4753

6375

3

-

-

0.054945

-

-

3.286046 1010

-

-

TFQMR

ILU

SSOR

ADI

1980

4753

6375

-

-

-

-

-

-

-

-

-

GMRES(10) ILU

SSOR

ADI

1980

4753

6375

2

-

-

0.054945

-

-

3.891019 1510

-

-

Table (2). No. of Iterations, CPU time and R. Residual Norms for Example 2, 95.0 .

Method Precond. Non-zeros

& fill-ins

No. of

Iteration

CPU time Relative Residual

Norms

CGS ILU(0)

SSOR

ADI

1980

4753

6375

3

6

3

0.054945

0.054945

0.054945

5.741227 1410

3.449238 1110

1.479128 1110

Bi-CGSTAB ILU(0)

SSOR

ADI

1980

4753

6375

3

18

8

0.054945

0.109890

0.054945

8.178668 910

8.762133 910

1.288786 910

TFQMR

ILU(0)

SSOR

ADI

1980

4753

6375

2

5

3

0.054945

0.109890

0.054945

9.876344 1110

1.096002 910

2.859933 910

GMRES(10) ILU(0)

SSOR

ADI

1980

4753

6375

1

4

3

negligible

0.054945

0.054945

2.153409 1510

1.920939 910

1.166310 1310

Table (3). No. of Iterations, CPU time and R. Residual Norms for Example 3, 75.1 .

Method Precond. Non-zeros

& fill-ins

No. of

Iteration

CPU time Relative Residual

Norms

CGS ILU(0)

SSOR

ADI

1980

4753

6375

3

13

14

negligible

0.054945

0.054945

1.431621 1410

2.873238 910

9.634591 1010

Bi-CGSTAB ILU(0)

SSOR

ADI

1980

4753

6375

3

28

30

negligible

0.109890

0.109890

6.337973 910

7.709481 910

5.890148 910

TFQMR

ILU(0)

SSOR

ADI

1980

4753

6375

3

14

15

0.054945

0.109890

0.109890

8.346323 1410

8.4247764 910

1.867795 1010

GMRES(10) ILU(0)

SSOR

ADI

1980

4753

6375

1

5

5

negligible

0.054945

0.054945

1.945635 1210

4.010245 910

2.984196 1610

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 242

Table (4). No. of Iterations, CPU time and Relative Residual Norms for Example 4.

Method Precond. Non-zeros

& fill-ins

No. of

Iteration

CPU time Relative Residual

Norms

CGS ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

12

4

3

0.109890

0.054945

0.054945

4.220049 1510

1.100062 1410

1.313719 1310

Bi-CGSTAB ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

14

5

5

0.109890

0.054945

0.054945

8.050642 1110

1.465550 910

8.913006 1110

TFQMR

ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

12

3

2

0.109890

0.054945

0.054945

2.003919 1210

9.300247 910

2.486359 910

GMRES(10) ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

10

2

1

0.109890

negligible

negligible

7.736185 1710

2.901990 1610

1.426597 1310

Table (5). No. of Iterations, CPU time and R. Residual Norms for Example 4, 1.5  .

Method Precond. No. of

Iteration

CPU

time

Relative

Residual Norms

CGS SSOR

ADI

10

8

0.109890

0.109890

4.961067 1210

6.351351 1310

Bi-CGSTAB SSOR

ADI

14

11

0.109890

0.109890
7.932627 910

8.646714 1010

TFQMR

SSOR

ADI

9

6

0.109890

0.109890
1.526661 910

5.672042 910

GMRES(10) SSOR

ADI

2

2

0.054945

0.054945
3.372888 910

1.310233 1010

Table (6). No. of Iterations, CPU time and R. Residual Norms for Example 5.

Method Precond

.

Non-zeros

& fill-ins

No. of

Iteration

CPU

time

Relative Residual

Norms

CGS ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

11

3

2

0.10989

0

0.05494

5

0.05494

5

5.741227 1010

3.180915 1210

1.112380 2110

Bi-CGSTAB ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

12

4

3

0.10989

0

0.10989

0

0.05494

5

6.063143 910

9.212743 910

3.216868 1710

TFQMR

ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

10

3

2

0.10989

0

0.10989

4.608243 1010

3.364870
1210

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 242

0

0.10989

0

1.324277 2310

GMRES(10) ILU(0)

ILU(1)

ILU(2)

1980

4753

6375

9

3

1

0.10989

0

0.05494

5

0.054945

8.736124 1210

1.937795
1710

1.610924 1510

Table (7). No. of Iterations, CPU time and R. Residual Norms for Example 5, 0.8  .

Method Precond. No. of

Iteration

CPU

time

Relative

Residual Norms

CGS SSOR

ADI

16

14

0.054945

0.054945

6.083266 1110

6.639469 1410

Bi-CGSTAB SSOR

ADI

18

15

0.109890

0.054945
7.286967 910

7.580448 910

TFQMR

SSOR

ADI

14

13

0.109890

0.109890
6.356598 910

3.062651 1010

GMRES(10) SSOR

ADI

4

4

0.054945

0.054945
5.349289 910

2.153155 1010

Fig.(1). Example 1, 1000n  ,
1510a  , ILU preconditioner.

-16

-12

-8

-4

0

4

1 6 11 16

No. of iterations

L
o

g
1
0
 o

f
re

s
id

u
a
l

n
o

rm
s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 240

Fig.(2). Example 2, 1000n  , SSOR preconditioner.

Fig.(3). Example 2, 1000n  , ADI preconditioner.

Fig.(4). Example 3, 200n  , SSOR preconditioner

-30

-25

-20

-15

-10

-5

0

1 4 7 10 13 16 19

No. of iterations

L
o

g
1
0
 o

f
r
e
s
id

u
a
l
n

o
r
m

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-30

-25

-20

-15

-10

-5

0

5

1 3 5 7 9 11

No. of iterations

L
o

g
1
0
 o

f
r
e
s
id

u
a
l
n

o
rm

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-25

-20

-15

-10

-5

0

5

1 4 7 10 13 16 19 22 25 28 31

No. of iterations

L
o

g
1
0
 o

f
r
e
s
id

u
a
l
n

o
r
m

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 244

Fig.(5). Example 3, 200n  , ADI preconditioner.

Fig.(6). Example 4, 400n  , ILU(0) preconditioner.

Fig.(7). Example 4, 400n  , ILU(1) preconditioner.

-30

-20

-10

0

1 6 11 16 21 26 31

No. of iterations

L
o

g
1
0
 o

f
re

s
id

u
a
l
n

o
rm

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-40

-30

-20

-10

0

10

1 4 7 10 13 16

No. of iterations

L
o

g
1
0
 o

f
re

s
id

u
a
l

n
o

rm
s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-40

-30

-20

-10

0

1 3 5 7 9 11

No. of iterations

L
o

g
1

0
 o

f
re

s
id

u
a
l

n
o

rm
s

GMRES(10)
Bi-CGSTAB

CGS
TFQMR

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 242

Fig.(8). Example 4, 400n  , SSOR preconditioner.

Fig.(9). Example 4, 400n  , ADI preconditioner.

Fig.(10). Example 5, 400n  , ILU(0) preconditioner.

-30

-20

-10

0

10

20

1 4 7 10 13 16

No. of iterations

L
o
g

1
0
 o

f
re

s
id

u
a

l n
o
rm

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-30

-20

-10

0

10

1 4 7 10 13

No. of iterations

L
o
g

1
0
 o

f
re

s
id

u
a

l n
o
rm

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-20

-15

-10

-5

0

5

1 4 7 10 13

No. of iterations

L
o

g
1
0
 o

f
r
e
s
id

u
a
l
n

o
r
m

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 242

Fig.(11). Example 5, 400n  , ILU(1) preconditioner.

Fig.(12). Example 5, 400n  , SSOR preconditioner.

Fig.(13). Example 5, 400n  , ADI preconditioner.

-25

-20

-15

-10

-5

0

5

10

1 4 7 10 13 16 19

No. of iterations

L
o

g
1

0
 o

f
re

s
id

u
a
l

n
o

rm
s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-18

-12

-6

0

1 3 5 7 9

No. of iterations

lo
g

1
0
 o

f
r
e
s
id

u
a
l
n

o
r
m

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-40

-30

-20

-10

0

10

20

1 4 7 10 13 16 19

No. of iterations

L
o
g

1
0
 o

f
re

s
id

u
a

l n
o
rm

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

 Sciences Series Tishreen University Journal. Bas 2332(4(العدد 03العمو الأساسية المجمد مجمة جامعة تشري

 242

Conclusions and Recommendations:
 We considered some preconditioned Krylov iterative methods for solving large

sparse non-symmetric linear systems of equations. The relative performance of three

preconditioners, namely ILU(m), SSOR and ADI in the CGS, Bi-CGSTAB, TFQMR and

GMRES(10) methods is shown in the Tables. Numerical experiments have shown that the

ILU(m) (m=1,2) preconditioned GMRES(10) requires less iterations to converge.

Increasing m for ILU(m) factorization reduces the total cost of finding an accurate solution

(at least for small m), even though the cost of finding the approximation increases. The

ILU(m) (m=1,2) preconditioner is found to be the best. That is reasonable convergence

was obtained for 2m  . However, the total cost of finding the solution was reduces as m

increased. Finally, the performance of preconditioned GMRES(10) was the best when it is

combined with a suitable preconditioner. The GMRES(10) gives us a good performance

and has fast convergence with all considered preconditioners.

REFERENCE:

[1]. SAAD, Y. Iterative Methods for Large Sparse Linear Systems, 1

st
 edition, PWS

Publishing Company, New York, 1995, 879.

[2]. BROWN, P. N. A theoretical comparison of the Arnoldi and GMRES algorithm,

SIAM J. Sci. Stat. Comp. U. S. A., Vol. 12, No. 25, 1991, 58-78.

[3]. MITTAL, R. C. and AL-KURDI, A. H. An efficient method for constructing ILU

preconditioner for solving large sparse non-symmetric linear systems by GMRES method,

Computers Math. Appl. U. S. A., Vol. 45, No. 23, 2003, 1757-1772.

[4] ATKINSON, K. E. An Introduction to Numerical Analysis, 2
nd

 Edition, Wiley,

Chichester, New York, Brisbane, Toronto and Singapore, 1988, 570.

[5]. THOMAS, J.W. Numerical Partial Differential Equations, 2
nd

 edition, Springer-

Verlag, New York, 1999, 986.

 الكردي ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ

 242

