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  ABSTRACT    

 

 

     Large sparse non-symmetric linear systems of equations often occur in many 

scientific and engineering applications. In this paper, we present a comparative study of 

some preconditioned Krylov iterative methods, namely CGS, Bi-CGSTAB, TFQMR and 

GMRES for solving such systems. To demonstrate their efficiency, we test and compare 

the numerical implementations of these methods on five numerical examples. The 

preconditioners considered here are incomplete LU-decomposition (ILU), Symmetric 

Successive Over Relaxation (SSOR), and Alternating Direction Implicit (ADI). The ILU 

preconditioner is shown to be extremely effective in achieving optimal convergence rates 

for the class of problems considered here. Finally, our results show that the GMRES is the 

best among the considered iterative methods.  
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Introduction: 
     Consider the linear system of equations 

bAx                                                    (1) 

where A  is a large, non-singular, sparse, non-symmetric matrix of order nn  and 

b  is a given vector of order n . Such systems often occur in many scientific and 

engineering applications [1]. For such systems iterative methods are usually preferred to 

direct methods which are expensive both in memory and computing requirements. There 

are now quite a number of Krylov subspace methods available for solving (1), e.g., CGS, 

Bi-CGSTAB, TFQMR and GMRES; for more details see [1,2] and references therein. In 

order to be effective, these methods must be combined with a good preconditioner, and it is 

generally agreed that the choice of the preconditioner is even more crucial than the choice 

of the Krylov iteration method. The preconditioner application in the iteration loop is the 

most delicate part of the iterative process. When the iterative method is based on Krylov 

subspaces, there is a need to use preconditioning techniques in order to achieve 

convergence in a reasonable number of iteration steps.  

      Since using a preconditioner in an iterative method incurs some extra cost, both 

initially for the setup, and per iteration for applying it, there is a trade-off between the 

constructing cost and applying the preconditioner, and the gain in convergence speed.    

Certain preconditioners need little or no construction phase at all (for instance SSOR 

preconditioner) but for others, such as incomplete factorizations, there can be substantial 

work involved. Broad classes of preconditioners are based on incomplete factorization of 

the coefficient matrix A .  

     In this work, we have focused our attention to make a detail comparative study of 

the preconditioned CGS, Bi-CGSTAB, TFQMR and GMRES for solving (1). The 

considered preconditioners are ILU(m) (incomplete LU decomposition of level m) [3], 

SSOR and ADI [1]. The performance of each iterative method combined with one of the 

mentioned preconditioners is measured in terms of CPU time and number of iterations. 

 

Importance and Parts of the Research: 
     Systems of linear equations given in (1) are frequently encountered in almost all 

the scientific and engineering applications such as physics, mechanics, signal processing 

and other applications of real life problems. For these reason we attempt to develop 

iterative methods for solving such systems of linear equations.  

1. Preconditioned Krylov subspace methods 

     The spectrum of the coefficient matrix A  governs the rate of convergence of any 

iterative method. By the use of preconditioning, this spectrum can be narrowed which then 

promises much better convergence properties for iterative methods. As will be seen, the 

choice of a preconditioner is crucial for the behavior of any iterative method, since it 

influences the speed of convergence and their stability. 

     Let 0x  be an arbitrary initial guess for the linear system given by (1) and let 

00 Axbr   be the corresponding residual vector. A Krylov subspace method is an 

iterative scheme, which for an arbitrary choice of 0x , seeks approximate solutions of the 

form  0k0k r,AKxx  , where  0k r,AK  is the Krylov subspace 

   o
1k

0
2

000k rA,...,rA,Ar,rspanr,AK  . The motivation for preconditioning is to speed up 

the convergence of an iterative solution of (1). Usually a preconditioner 1M  or 2M  is used 

to multiply (1) on the left / right respectively so that the preconditioned system is 
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  bMxMAMM
1

1
1

2
1

2
1

1


               (2) 

where 1M and 2M  are left and right preconditioning matrices respectively. In this 

work, the GMRES method is used with the right preconditioners. 

2. Storage scheme 

     A short representation of storage technique described here is called as compressed 

storage scheme [3]. The storage format is the most general; it makes absolutely no 

assumptions about the sparsity structures of the matrix, and it does not store any 

unnecessary elements. Storing given matrix A  with compressed storage scheme requires 

three one dimensional arrays VA, JA, and IA of length na, na and n+1, where n is the 

number of rows and na is the total number of non-zero elements in the matrix A . The 

array VA contains the non-zero elements of A  stored row-by-row, JA contains the column 

indices which corresponds to the non-zero elements in the array VA, and IA contains n+1 

pointers which delimit the rows of non-zero elements in the array VA, as illustrated below: 

For example, let A  be a square matrix of order 5. 

























5552

454441

33

232221

1311

a00a0

aa00a

00a00

00aaa

00a0a

A

                   (3) 

The arrays VA , JA and IA are 



12107631

52541332131

5

5552

4

454441

3

33

2

232221

1

1311







IA

JA

aaaaaaaaaaaVA

rowrowrowrowrow 

                 (4) 

By convention, we define IA[n+1]= 1na  . The storage savings for this approach is 

significant. Instead of storing 2n  elements, we need only 2 1na n   storage locations. 

The matrix (3) can not be factored, by using the above storage scheme, “in place” unless 

fill-ins are accounted for when storage is created. For example, when (3) is factored, non-

zero numbers are assigned to 42a and 53a , but neither of these elements appears in (4) as 

illustrated, i.e., there is need to reallocating storage to make room for the fill-ins. In this 

work we present a good choice for predicting fill-ins, using powers of a Boolean matrix.   

3. Preconditioning 

     In this section, we discuss the use of preconditioning with the aim of reducing the 

iteration steps required to obtain a good approximation to the solution of (1). It is clear that 

the preconditioned iterative method to be successful, it is important that we choose the 

correct preconditioner. We want to choose a preconditioner so that condition number 

  1AMk 1  . The job of choosing the correct preconditioner is not easy. There are many 

ways to choose a preconditioner. Usually, each of these different preconditioners works 

best in some situation. All of these preconditioners approximate 1A  to some degree. If we 

could choose a matrix M  such that IAM 1  , we could have   1AMk 1   and the 

solution is attained in one step. Of course, we can not do this, because amount of work 

involved in getting 1A  will be excessively high in practical circumstances. Consequently, 

preconditioning must be regarded as a trade off between the cost of constructing and 

manipulating the preconditioner, and the acceleration of the iterative process. Most 

preconditioners take in their application an amount of work proportional to the number of 

variables. This implies that they multiply the work per iteration by a constant factor. On 
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the other hand, the number of iterations as a function of the matrix size is usually improved 

by a constant. Certain preconditioners are able to improve on this situation, most notably of 

them is the incomplete LU-decomposition.  

(1). Incomplete LU Preconditioner (ILU) 

     Incomplete LU decomposition (ILU) is based on the LU-decomposition of the 

coefficient matrix A . In constructing an ILU(m) (ILU of level m), we use The Powers of a 

Boolean Matrix Strategy (PBS) for determining the pattern of non-zero elements of the 

factors LU of a given matrix A ; for more details, we refer the reader to [3].  

Algorithm 1. PBS (The Powers of a Boolean Matrix Strategy) 

Step 1.  

       Form the matrix  ijbB   as 



 


otherwise,0

0aif,1
b

ij
ij  

Step 2  

        Compute  1m,B
m2  . 

         If ,BB
1mm 22 

 then 

                  Form the set    
}1b:j,i{P

m2
ij  . 

          Else    1mm  , and go to Step 2. 

From the Algorithm 1, it follows that the sparsity pattern of LUM  is 

approximately equal to that of 
m2B .  At any given iteration, if the calculated Boolean 

matrix agrees with the matrix at the previous iteration, i.e. ,BB 1mm   then the process 

has converged and we have the sparsity pattern of the LU factors. If 1mm BB  , we get 

the complete LU factors. Sparse LU - decomposition method, may give the solution. 

However, using the complete LU factors (when 1mm BB  ) is not desirable because it 

would defeat the purpose of using an iterative method. Since the preconditioner can be 

improved by allowing more fill-ins and its effectiveness depends on how well 1M  

approximates 1A , the Algorithm 1 can be terminated at a level m such that there is trade - 

off between the computational requirements (both in terms of memory and CPU time) and 

reducing the number of iterations. We show the efficiency of this method in section of 

numerical experiments by taking numerical examples.  

     Once the non-zero structure of L and U matrices is obtained using Algorithm 1, 

non-zero entries are then obtained by Doolittle's method [1], where all the diagonal entries 

of L  are 1. 

LUA   gives 
 





j,imin

1k

kjikij ula                                (5) 

This gives the following explicit formulas for ijl and iju : 
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ki,ulau

ki,
u

ula

l

1i

1j

jkijikik

kk

1k

1j

jkijik

ik




















                                   (6) 

While making an incomplete LU – factorization, we need to store only non –zero 

entries of L  and U . We define an extra array Diag [1…n] which points to the diagonal 

elements of U  in the array VA. The non –zero structure P  of L  and U  is stored in JA, 

IA and VA containing 0a ij   as well as fill-ins. The following algorithm calculates the 

incomplete decomposition. The Boolean variable revise is false for the standard 

incomplete decomposition and true for the modified version such that row sums of the rest 

matrix LUAR   are equal to zero. The array Point [1…n] is an array of integers which 

points to the entries in L  and U  of row i. 

Algorithm 2. ILU (The incomplete LU- decomposition) 

For i = 1 To n Do 

    Point [ i ] = 0; 

For i = 2 To n Do 

   { 

       For v = IA [ i ]+1 To IA [ i+1 ]-1 Do 

           Point [ JA [ v ] ] = v; 

For v = IA [ i ] To Diag [ i ]-1 Do 

         { 

             j = JA [ v ] ; 

             VA [ v ]  = VA [ v ] / VA [ Diag [ j ] ] ; 

             For w = Diag [ j ]+1 To IA [ j+1 ] -1 Do  

                { 

                     k = Point [ JA [ w ] ] ; 

                     If ( k>0 ) then 

                         VA [ k ] = VA [ k ] – VA [ v ] * VA [ w ] ; 

                     Else 

                     If ( revised ) then 

                        VA [ Diag [ i ] ] =VA [ Diag [ i ] ] –VA [ v ]*VA [ w ] ; 

                }//End For w. 

         }//End For v. 

       For v = IA [ i ]+1 To IA [ i+1 ]-1 Do 

           Point [ JA [ v ] ] = 0 ; 

   }//End For i. 

     The choice of P  is extremely important. In practice, the non-zero pattern of L and 

U is often taken the same as that of the original matrix. This has advantage that no 

additional storage space is needed for the non-zero structure of the incomplete 

decomposition. The ILU(m) decomposition is based on the structural strategy outlined 

above for accepting fill-ins only to a certain level m. A level function is used in incomplete 

factorization to control the number of fill elements. 

The Algorithm 2 for computing L and U with PBS does produce an optimal 

preconditioner. 

(2). Symmetric Successive Over Relaxation (SSOR) 

     Iterative methods that can be expressed in the simple form 
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CNxx l1l                                      (7) 

where neither N  nor C  depends upon the iteration count l , are called stationary 

iterative methods. The stationary iterative methods, e.g., SSOR, and ADI, are rarely 

competitive with Krylov iterative methods. So, all these methods are often employed as 

preconditioners for nonstationery iterative methods. Since the SSOR scheme is a potential 

solver for the problem, it should be clear that the SSOR scheme would provide us with an 

approximation of 1A . Let  

AAA UDLA                       (8) 

be the splitting of A  into strictly lower, diagonal, and strictly upper triangular 

matrices of A . To find a preconditioner, we must find a matrix M  as approximation to A . 

The residual correction method is to approximate 1A  and define the iteration 

ll1l Nruu                                              (9) 

where ll Aubr   and N  is some approximation to 1A .  

If      1
AAA

1
AA LDDUD2N


 , we get the Symmetric Successive Over 

Relaxation scheme (SSOR), where(omega) is a free parameter. Thus, when apply SSOR, 

we are solving the equation  
 

     ll1lAA
1

AAAl1l
1 ruuUDDLD

2

1
uuN 


 




 . 

SSOR preconditioner can be used to precondition Krylov subspace methods, such as CGS, 

Bi-CGSTAB, TFQMR and GMRES and it requires no construction time.   

(3). Alternative Direction Implicit Preconditioner (ADI) 

     The Alternating Direction Implicit (ADI) method is one of the stationary iterative 

methods used as a preconditioner for nonsymmetric systems. Let (8) be the splitting of the 

coefficient matrix A . If     1
AAA

1
AA LDDUDN


 , we get the ADI scheme, 

where(omega) is a free parameter. As before, N  is some approximation to 1A  and AL , 

AD , and AU represent the lower triangular, diagonal, and upper triangular parts of 

A respectively. The matrix N  is a good choice because it is lower and upper triangular 

matrices. Thus, when apply ADI, we are solving the equation 

       ll1lAA
1

AAAl1l
1 ruuUDDLD

1
uuN 


 




 . The ADI is probably best only 

considered as a preconditioner in the Krylov subspace methods.   

(4). The Preconditioning Step 

     The preconditioners M considered in this work are ILU, SSOR and ADI. It is 

important that 1M  is never explicitly computed. Alternatively, we have 

vMzvMz 1                                    (10) 

The preconditioning step (10) is an important step in any preconditioned iterative 

method. We now describe the solution of (10) for different cases. 

(I). Case 1. The Preconditioner LUM  . 

The system (10) can be solved using CGS, Bi-CGSTAB and GMRES by the 

following two steps: 

Step 1: Forward substitution in LY b .  

Step 2: Back substitution in UX Y .  

where the Steps 1 and 2 are given in the Algorithms 3 and 4 respectively. 

Algorithm 3. Forward Substitution.  
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Y[ 1 ] = b [ 1 ] ; 

For i = 2 To n Do 

   { 

       sum = 0 ; 

       For j = IA [ i ] To  Diag [ i ]-1  Do 

          sum= sum + VA [ j ] * Y[ JA [ j ] ] ; 

       Y[ i ] = b [ i ] - sum ; 

   }//End For i. 

Algorithm 4. Back Substitution. 

X [ n ] = Y [ n ] / VA [ Diag [ n ] ] ; 

For i = n-1 Down To 1 Do 

  { 

       sum1 = 0 ; 

       For j = Diag [ i ] To IA [ i+1] -1 Do 

          sum1 = sum1 + VA [ j ] * X [ JA [ j ] ] ; 

       X[ i ] = ( Y [ i ] – sum1 ) / VA [ Diag [ i ] ] ; 

  }//End For i. 

     The system (2) can be solved using TFQMR as follows. Let M be a given 

nonsingular nn  matrix which approximates in some sense the coefficient matrix A  of 

(1). Moreover, assume that M is decomposed in the form 21MMM  . Instead of solving the 

original system (1), we apply the TFQMR algorithm to the equivalent linear system 

byA  , where   xMy,AxbMb,AMMA 20
1

1
1

2
1

1   . Here 0x  denotes some 

initial guess for the solution of (1). The iterates ky  and residual vector kk yAbr  for 

the preconditioned system byA  are transformed back into the corresponding qualities 

for the original system by setting k
1

2k yMx   and k1k rMr  . For a case 1, the system (2) 

can be solved using TFQMR by taking LM1   and UM2   in 21MMM  . Thus, the 

system (10) can be solved by the Algorithm 3 ( LM1  ) and the Algorithm 4 ( UM2  ). 

The preconditioning LUM   involves writing A  as RLUA  , with R as error term. 

However, the size of the entries in the error matrix for ILU(m) decreases as m increases. 

When solving the system using the splitting RLUA  , we consider the 

system     bLUAxLU
11 

 . The preconditioned matrix   ALU
1

 has to resemble the 

identity matrix I  as closely as possible. Since 

         RLUIRLULUALU
111 

 , then the matrix   RLU
1

 should be as small 

as possible in some sense. We give three Theorems which state that   1
LU


 is a proper 

approximation to 1A  if and only if   RLU
1

 is sufficiently small for some matrix norm 

. . 

Theorem 1. Suppose the product LU is nonsingular and RLU   is a splitting of the 

nonsingular nn  matrix A and the product LU is nonsingular. Then 

 

 

 
  RLU

A

ALU

Acond

RLU
1

1

111










                             (11) 
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where   1A.AAcond  the condition number of A , and LU is the ILU(m) 

factorization. 

Proof. 

          ALUAALUIALULURLU
11111 

                           

   
 

1

1

11

111
AA

A

ALU
ALUARLU 








  

by dividing the left and the right-hand side by 1. AA one obtains the first 

inequality of (11). The second inequality follows from th following: 

    
    

    1111

1111

111













ARLULUA

LUAARLU

ALUARLU

 

After division by 1A  the desired inequality is obtained.                                                                            

Theorem 2.   If x  is the solution of (1) and x~  satisfies bx~LU  . Then 

  RLU
x

x~x 1



             (12) 

Proof. We know that     AxLUAbLUbAx~x
1111   . But 

          ALUAALUIALULURLU
11111 

  

Thus, we have   RxLUx~x
1

 . Taking the norm leads to the desired.                                                                                         

Theorem 3. Suppose RLU   is a splitting of the nonsingular nn  matrix A and 

1RA 1 
. Then 

  
RA1

RA1
ALUcond

1

1

1










  

where LU  is the ILU(m) factorization. 

Proof.  Suppose LUx  equals the null vector 0. 

    xRAxxRxA0xRAI0xRA0LUx 111    

Because 1RA 1 
 this implies that x  equals 0 so 0x  . This proves that LU 

is non-singular. 

       

     RA1RAIRAIRAI

RAIcondARAcondALUcond

111111

1111














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By a Theorem of Atkinson [4]  
RA1

1
RAI

1

11






 . This completes the 

proof.            

     The Theorem 3 states that we can make R  as small as possible and this will have 

a positive effect on the condition of   ALU
1

. 

(II). Case 2. The Preconditioner M = SSOR and ADI. 

     The preconditioning step in the CGS, Bi-CGSTAB and GMRES methods involves 

the preconditioner SSOR is the step (10). Hence, we must solve the equation 

 
    vzUDDLD

2

1
Mz AA

1
AAA 





. The solution to this equation can be 

expressed as 

   

  z~DzUD

v2z~LD

AAA

AA




     (13) 

The speed of convergence of SSOR depends critically on  ; the optimal value for   

may be estimated from the spectral radius of the Jacobi iteration matrix 

 AA
1

AJ ULDR   . 

Similarly, The preconditioning step in the CGS, Bi-CGSTAB and GMRES that 

involves the preconditioner ADI is the step (10). Hence, we must solve the equation 

    vzUDDLD
1

Mz AA
1

AAA 





. The solution to this equation can be expressed 

as 

 

  z~DzUD

vz~LD

AAA

AA




            (14) 

The systems (13) and (14) can be solved by using Algorithm 3 and Algorithm 4 

respectively because AA LD  and AA UD  are lower and upper triangular matrices 

respectively. 

     The optimal value for   is given by  

 J121

2


              (15) 

where J  is the maximum eigenvalue of the matrix JR [5]. Optimum convergence 

rate may be achieved for a value of relaxation factor   selected for various computer runs, 

and no economical expressions for estimating   would be suggested. In the present work, 

the chosen value of   is obtained by the procedure explained in [5]. 

Note. The preconditioning step in the TFQMR that involves the preconditioners 

SSOR or ADI is the step (10). In the case SSOR is preconditioner, we have 

 
   AA

1
A2AA1 UDDM,LD

2

1
M 


   

Similarly, in the case ADI is preconditioner, we have 

   AA
1

A2AA1 UDDM,LD
1

M 


   

 

 



 Sciences Series  Tishreen University Journal. Bas   2332( 4( العدد  03العمو  الأساسية المجمد   مجمة جامعة تشري  

 

 202 

4. Numerical Experiments 

     This Section compares the numerical efficiency of the ILU(m) preconditioner with 

SSOR and ADI. Different implementations of the CGS, Bi-CGSTAB, TFQMR and 

GMRES(10) will be compared in terms of CPU times and number of iterations. The 

iterative methods have been implemented as C++ codes using double precision accuracy. 

The five problems reported herein were solved on an IBM Compatible PC with Pentium IV 

processor (512 RAM). For our test runs, we always chose 0x  as initial guess. For all tests, 

the right-hand side b was set to Ax , where  T1,...,1,1x  . The iterations were stopped as 

soon as 8

0

l
10

r

r  . Finally, the convergence plots for the residual norms, in a 

logarithmic scale, versus the iteration number are given. 

 

Results and Discussions: 
     In this Section, we introduce some examples to show the efficiency of the 

suggested direct and iterative methods for solving (1). 

Example 1 [2]. Let us consider the matrix of size 1000n   











































a1

1a1

...

...

...

1a1

1a1

1a

A

 

The example is studied here to give due importance to GMRES(10) when it is used 

with a suitable preconditioner like ILU. Results are given in the Table (1), which lists the 

number of iterations, the solution CPU time in seconds and the relative residual error. It is 

interesting to note that the ILU preconditioned GMRES(10) and Bi-CGSTAB do not 

stagnate and produce very good results. It has been found that the performance of the ILU 

preconditioned GMRES(10) is the best, where the solution is given in two steps. However, 

the ILU preconditioned CGS and TFQMR algorithms stagnate and do not show any sign of 

convergence. Similarly when we use SSOR and ADI preconditioners, all proposed iterative 

methods get stagnated and do not converge. In order to show the convergence 

characteristics of the iterative solution methods, Fig. (1) presents the evolution of the 

relative residual norm for CGS, Bi-CGSTAB, TFQMR and GMRES(10) with ILU 

preconditioner. It is interesting to note that while the CGS and TFQMR are stagnating the 

GMRES(10) and Bi-CGSTAB residuals are decreasing. 

 

Example 2 [3]. Consider the tridiagonal square matrix of size 1000n  . 



































1.52

31.52

...

...

...

31.52

31.52

31.5

A
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 This example is chosen here to show that the performance of ADI preconditioner is 

better than that obtained by SSOR in all considered methods. Table (2) presents, under the 

same headings as Table (1), the relative residual error, the solution iterations and CPU time 

in seconds of this problem. Here, the performances of the ILU and ADI preconditioners are 

better than that one of SSOR in all methods considered in this work. The performance of 

SSOR preconditioned Bi-CGSTAB is not good in comparison to the other methods. The 

preconditioned GMRES(10) algorithm shows the best performance, with a speed up 

against the Bi-CGSTAB of about 2.  Specific comparison shows for the iterative methods 

considered with the ILU preconditioner (or ADI) have an iteration number of the order of 

one-two to one–third of that with SSOR preconditioner. In Fig. (2) (for SSOR) and Fig. (3) 

(for ADI), we show the convergence curve for the considered methods. As the plot 

indicates, the convergence is faster with the GMRES(10). 

Example 3 [1]. Let A  is a 200200  Toeplitz matrix of the form 













































11

111

1111

1....

0.....

0.11111

0.011111

0..01111

A

 

Table (3) presents the solution CPU time in seconds, number of iterations and the 

relative error in getting the solution of (1). This example is given here to show that the 

performances of ADI and SSOR preconditioners approximately are the same in all 

considered methods. Again, the performance of the ILU preconditioned GMRES(10) is 

much better than that of the other methods where the solution is given in one step. Specific 

comparison shows that for the considered iterative methods with ILU preconditioner have 

an iteration number of the order of one-fifth to on- sixth of that with SSOR (or ADI). But 

the convergence is faster with the GMRES(10). Finally, Fig. (4) (for SSOR) and Fig. (5) 

(for ADI) show the evolution of the relative residual norms for iterative methods. It is 

interesting to note that while the CGS and TFQMR residuals present oscillations the 

GMRES(10) residuals are monotonically decreasing. 

Example 4 [3]. The matrix A   is given by the block tridiagonal matrix 
4

4

. . . . . .

. . . . . .

. . . . . .

4

4

E I

I E I

A E

I E I

I E



 

 



   
   
 
   
   
   

    
   
   

    
      

 

and  1,1 . The matrices represent the 5- point discretization of the 

operator 
xy

2

x

2
22 












  on a rectangular region. Experiments are done for the matrix A  

of size n , where 400n  ,   20Edimn0  , 1920na  . Computations are done for 

5.0 . Table (4) and Table (5) list the non-zero entries and fill-ins in constructing L and 

U, the number of iterations, solution CPU time in seconds and the relative residual error. 

From the table, it has been seen that the performance of the ILU(2) preconditioner in the 

GMRES(10) method is the best. The solution is given in one step (ILU(2)) and two steps 

(ILU(1)). Increasing m for an ILU(m) factorization reduces the total cost of finding an 
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accurate solution (at least for small m). The performance of SSOR and ADI preconditioned 

iterative methods is much better than that obtained by ILU(0). But the performance of ADI 

preconditioner is better than SSOR in all considered iterative methods. The ADI and SSOR 

preconditioned GMRES(10) algorithm is two times faster than CGS, Bi-CGSTAB and 

TFQMR. However, the performance of the preconditioned GMRES(10) is the best among 

the considered iterative methods. The number of iterations by using GMRES(10) is much 

less. Finally, in order to show the convergence characteristics of the proposed iterative 

methods. Fig. (6) (for ILU(0)), Fig. (7) (for ILU(1)), Fig. (8) (for SSOR), and Fig. (9) (for 

ADI) show the relative residual norms for the iterative methods, where again the good 

properties of GMRES(10) can be seen.  

 

Example 5 [3]. The matrix A  is given by the block tridiagonal matrix 

 

1

2 1

1 2

2 1

2

. . . . .

, ,. . . . .

. . . . .

E D a b

D E D a b

A D D

D E D a b

D E a b

     
     
     
     
     

       
     
     
     
     

    

 

 

and  1,1  and 11 1b,1a  , E  is same as defined in Example 4. 

The matrix A  represents the 5- point discretization of the operator 
yxy

2

x

2
22 

















  

on a rectangular region. We have chosen the values of 5.2  and 0.21  , where 

  1920na,400n,20Edimn0  . Table (6) and Table (7) list, under the same heading as 

Table (4) and Table (5), the non-zero entries and fill-ins in constructing L and U 

decomposition, solution CPU time in seconds, iteration number and the relative residual 

errors. From the tables, it has been seen that the performance of the ILU(m) (m=1,2) in the 

GMRES(10) method is the best. The number of iterations by GMRES(10) solver is much 

less. The solution is given in two steps (ILU(1)) or one step (ILU(2)). In this example, the 

performance of ILU(0) is better than that obtained by SSOR and ADI in CGS, Bi-

CGSTAB, and TFQMR. The performance of the ADI preconditioner is better than the 

SSOR preconditioner in CGS, Bi-CGSTAB and TFQMR. The ADI and SSOR 

preconditioned GMRES(10) algorithm is 2 times faster than CGS, Bi-CGSTAB and 

TFQMR. Specific comparisons show that for the considered methods with ADI (or SSOR) 

have an iteration number of the order of one- fifth to one-sixth with GMRES(10). Finally, 

in order to show the convergence characteristics of the proposed iterative solution 

methods. Fig. (10) (for ILU(0)), Fig. (11) (for ILU(1)), Fig. (12) (for SSOR) and Fig. (13) 

(for ADI) show the relative residual norms for the iterative methods. Again the good 

properties of GMRES(10) can be seen. 
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Table (1). No. of Iterations, CPU time and R. Residual Norms for Example1, 95.0 . 

Method Precond. Non-zeros 

& fill-ins 

No. of 

Iteration 

CPU 

time 

Relative 

Residual Norms 

CGS ILU 

SSOR 

ADI 

1980 

4753 

6375 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Bi-CGSTAB ILU 

SSOR 

ADI 

1980 

4753 

6375 

3 

- 

- 

0.054945 

- 

- 

3.286046 1010  

- 

- 

TFQMR 

 

ILU 

SSOR 

ADI 

1980 

4753 

6375 

- 

- 

- 

-                            

- 

- 

- 

- 

- 

GMRES(10) ILU 

SSOR 

ADI 

1980 

4753 

6375 

2 

- 

- 

0.054945                              

-                            

- 

3.891019 1510  

- 

- 

 

Table (2). No. of Iterations, CPU time and R. Residual Norms for Example 2, 95.0 . 

Method Precond. Non-zeros 

& fill-ins 

No. of 

Iteration 

CPU time Relative Residual 

Norms 

CGS ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

3 

6 

3 

0.054945 

0.054945 

0.054945 

5.741227 1410  

3.449238 1110  

1.479128 1110  

Bi-CGSTAB ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

3 

18 

8 

0.054945 

0.109890                                              

0.054945 

8.178668 910  

8.762133 910  

1.288786 910  

TFQMR 

 

ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

2 

5 

3 

0.054945                            

0.109890 

0.054945 

9.876344 1110  

1.096002 910  

2.859933 910  

GMRES(10) ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

1 

4 

3 

negligible 

0.054945                            

0.054945 

2.153409 1510  

1.920939 910  

1.166310 1310  

 

Table (3). No. of Iterations, CPU time and R. Residual Norms for Example 3, 75.1 . 

Method Precond. Non-zeros 

& fill-ins 

No. of 

Iteration 

CPU time Relative Residual 

Norms 

CGS ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

3 

13 

14 

negligible 

0.054945 

0.054945 

1.431621 1410  

2.873238 910  

9.634591 1010  

Bi-CGSTAB ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

3 

28 

30 

negligible 

0.109890                                              

0.109890 

6.337973 910  

7.709481 910  

5.890148 910  

TFQMR 

 

ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

3 

14 

15 

0.054945                            

0.109890 

0.109890 

8.346323 1410  

8.4247764 910  

1.867795 1010  

GMRES(10) ILU(0) 

SSOR 

ADI 

1980 

4753 

6375 

1 

5 

5 

negligible 

0.054945                            

0.054945 

1.945635 1210  

4.010245 910  

2.984196 1610  
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Table (4). No. of Iterations, CPU time and Relative Residual Norms for Example 4. 

Method Precond. Non-zeros 

& fill-ins 

No. of 

Iteration 

CPU time Relative Residual 

Norms 

CGS ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

12 

4 

3 

0.109890 

0.054945 

0.054945 

4.220049 1510  

1.100062 1410  

1.313719 1310  

Bi-CGSTAB ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

14 

5 

5 

0.109890 

0.054945                                                   

0.054945 

8.050642 1110  

1.465550 910  

8.913006 1110  

TFQMR 

 

ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

12 

3 

2 

0.109890 

0.054945                                                   

0.054945 

2.003919 1210  

9.300247 910  

2.486359 910  

GMRES(10) ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

10 

2 

1 

0.109890 

negligible 

negligible 

7.736185 1710  

2.901990 1610  

1.426597 1310  

 

Table (5). No. of Iterations, CPU time and R. Residual Norms for Example 4, 1.5  . 

Method Precond. No. of 

Iteration 

CPU 

time 

Relative 

Residual Norms 

CGS SSOR                                                                                

ADI 

10 

8 

0.109890           

0.109890 

4.961067 1210  

6.351351 1310  

Bi-CGSTAB SSOR                                                                                  

ADI 

14 

11 

0.109890           

0.109890 
7.932627 910  

8.646714 1010  

TFQMR 

 

SSOR                                                                                

ADI 

9 

6 

0.109890 

0.109890 
1.526661 910  

5.672042 910  

GMRES(10) SSOR                                                                                

ADI 

2 

2 

0.054945 

0.054945 
3.372888 910  

1.310233 1010  

 
Table (6). No. of Iterations, CPU time and R. Residual Norms for Example 5. 

Method Precond

. 

Non-zeros 

& fill-ins 

No. of 

Iteration 

CPU 

time 

Relative Residual 

Norms 

CGS ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

11 

3 

2 

0.10989

0 

0.05494

5 

0.05494

5 

5.741227 1010  

3.180915 1210  

1.112380 2110  

Bi-CGSTAB ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

12 

4 

3 

0.10989

0 

0.10989

0 

0.05494

5 

6.063143 910  

9.212743 910  

3.216868 1710  

TFQMR 

 

ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

10 

3 

2 

0.10989

0 

0.10989

4.608243 1010  

3.364870
1210  
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0 

0.10989

0 

1.324277 2310  

GMRES(10) ILU(0) 

ILU(1) 

ILU(2) 

1980 

4753 

6375 

9 

3 

1 

0.10989

0 

0.05494

5                                                   

0.054945 

8.736124 1210  

1.937795
1710  

1.610924 1510  

 

 

Table (7). No. of Iterations, CPU time and R. Residual Norms for Example 5, 0.8  . 

Method Precond. No. of 

Iteration 

CPU 

time 

Relative 

Residual Norms 

CGS SSOR                                                                                

ADI 

16 

14 

0.054945 

0.054945 

6.083266 1110  

6.639469 1410  

Bi-CGSTAB SSOR                                                                                  

ADI 

18 

15 

0.109890           

0.054945 
7.286967 910  

7.580448 910  

TFQMR 

 

SSOR                                                                                

ADI 

14 

13 

0.109890 

0.109890 
6.356598 910  

3.062651 1010  

GMRES(10) SSOR                                                                                

ADI 

4 

4 

0.054945 

0.054945 
5.349289 910  

2.153155 1010  

Fig.(1). Example 1, 1000n  , 
1510a  , ILU preconditioner. 
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Fig.(2). Example 2, 1000n  , SSOR preconditioner. 

Fig.(3). Example 2, 1000n  , ADI preconditioner. 

Fig.(4). Example 3, 200n  , SSOR preconditioner 
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Fig.(5). Example 3, 200n  , ADI preconditioner. 

 

Fig.(6). Example 4, 400n  , ILU(0) preconditioner. 

Fig.(7). Example 4, 400n  , ILU(1) preconditioner. 
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Fig.(8). Example 4, 400n  , SSOR preconditioner. 

 

Fig.(9). Example 4, 400n  , ADI preconditioner. 

Fig.(10). Example 5, 400n  , ILU(0) preconditioner. 

 

-30

-20

-10

0

10

20

1 4 7 10 13 16

No. of iterations

L
o
g

1
0
 o

f 
re

s
id

u
a

l n
o
rm

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-30

-20

-10

0

10

1 4 7 10 13

No. of iterations

L
o
g

1
0
 o

f 
re

s
id

u
a

l n
o
rm

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR

-20

-15

-10

-5

0

5

1 4 7 10 13

No. of iterations

L
o

g
1
0
 o

f 
r
e
s
id

u
a
l 
n

o
r
m

s

GMRES(10)
Bi-CGSTAB
CGS
TFQMR



 الكردي                            ير المتناظرة كثيرة الأصفارمقارنة بعض طرائق كريموف المسرعة لحل جمل المعادلات الخطية غ  
 

 242 

Fig.(11). Example 5, 400n  , ILU(1) preconditioner. 

 

Fig.(12). Example 5, 400n  , SSOR preconditioner. 

Fig.(13). Example 5, 400n  , ADI preconditioner. 
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Conclusions and Recommendations: 
     We considered some preconditioned Krylov iterative methods for solving large 

sparse non-symmetric linear systems of equations. The relative performance of three 

preconditioners, namely ILU(m), SSOR and ADI in the CGS, Bi-CGSTAB, TFQMR and 

GMRES(10) methods is shown in the Tables. Numerical experiments have shown that the 

ILU(m) (m=1,2) preconditioned GMRES(10) requires less iterations to converge. 

Increasing m for ILU(m) factorization reduces the total cost of finding an accurate solution 

(at least for small m), even though the cost of finding the approximation increases. The 

ILU(m) (m=1,2) preconditioner is found to be the best. That is reasonable convergence 

was obtained for 2m  . However, the total cost of finding the solution was reduces as m 

increased. Finally, the performance of preconditioned GMRES(10) was the best when it is 

combined with a suitable preconditioner. The GMRES(10) gives us a good performance 

and has fast convergence with all considered preconditioners. 
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