2008 (4) 2321 (30) daall Loule) aghal) Aedes — Lpalall ciliaally Giganll (5 dnals Alaa

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (30) No. (4) 2008

Comparison of some Preconditioned Krylov
Methods for Solving Sparse Non-symmetric
Linear Systems of Equations

Dr. Ahmad Al-Kurdi *

(Received 24 / 1/ 2008. Accepted 26/5/2008)

O ABSTRACT 0O

Large sparse non-symmetric linear systems of equations often occur in many
scientific and engineering applications. In this paper, we present a comparative study of
some preconditioned Krylov iterative methods, namely CGS, Bi-CGSTAB, TFQMR and
GMRES for solving such systems. To demonstrate their efficiency, we test and compare
the numerical implementations of these methods on five numerical examples. The
preconditioners considered here are incomplete LU-decomposition (ILU), Symmetric
Successive Over Relaxation (SSOR), and Alternating Direction Implicit (ADI). The ILU
preconditioner is shown to be extremely effective in achieving optimal convergence rates
for the class of problems considered here. Finally, our results show that the GMRES is the
best among the considered iterative methods.

Keywords: Nonsymmetric linear system, Krylov subspace methods, preconditioning.

*Assistant Professor, Department of Mathematics, Faculty of Science, Al-Baath University, Homs,
Syria.

227

2008 (4) 2321 (30) daal) Lol aghal) Aeides — Lpalall ciliaally Giganll (5 daals Alna

Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (30) No. (4) 2008

Aabadl) cNaleall Jaa Jad depuall Cigli S ik (ary 43l
Sl 588 5 lalinal) S

" e daaf) gisal)

(2008/5/26 b ,aill 3 2008 / 1 /24 g)ay) &)

O ueildl [

Ol 8 Ule Gatha e ¢ s 55 ¢yl jue ¢ dphall cValadl da el

s Aoyl LSl Gaply S Bihk e 4)lie dulyy (g el 12a (L Aaaiglly dnalal) Cliplal)

Sleyual) .Y aleddl Jea (e g5l 128 Jal GMRES 5 TFQMR 5 Bi-CGSTAB 5 CGS (33l

g3 5 (SSOR) gybalul Ll ¢ 15 i) (358 ¢ yusall 5 (ILU) il e LU Julas s Lia Lyl

O e ol ¥ aee) 3 a2) Jled ILU g el o 0 - (ADI) Agsbiial) dpianall cilalasy)

aen O deadY) & il GMRES(10) ddyha of Liplad ¢t hoal L Gy yaall Jilisall G s
Vgl Ayl 3yl

@wﬂ\ ¢ &JJL_’)S ¢ Liad éjbh ¢ ULL\'SA P Aol dlaa :\,nli&d\ Glalsl)

'L,M“_U‘A_C"'.m LAI@-@JM‘&,}.‘S— QQA'AQ_)S\M— Gayda ¥

228

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

Introduction:
Consider the linear system of equations
Ax=b 1)

where A is a large, non-singular, sparse, non-symmetric matrix of order N x n and
b is a given vector of order n. Such systems often occur in many scientific and
engineering applications [1]. For such systems iterative methods are usually preferred to
direct methods which are expensive both in memory and computing requirements. There
are now quite a number of Krylov subspace methods available for solving (1), e.g., CGS,
Bi-CGSTAB, TFQMR and GMRES; for more details see [1,2] and references therein. In
order to be effective, these methods must be combined with a good preconditioner, and it is
generally agreed that the choice of the preconditioner is even more crucial than the choice
of the Krylov iteration method. The preconditioner application in the iteration loop is the
most delicate part of the iterative process. When the iterative method is based on Krylov
subspaces, there is a need to use preconditioning techniques in order to achieve
convergence in a reasonable number of iteration steps.

Since using a preconditioner in an iterative method incurs some extra cost, both
initially for the setup, and per iteration for applying it, there is a trade-off between the
constructing cost and applying the preconditioner, and the gain in convergence speed.
Certain preconditioners need little or no construction phase at all (for instance SSOR
preconditioner) but for others, such as incomplete factorizations, there can be substantial
work involved. Broad classes of preconditioners are based on incomplete factorization of
the coefficient matrix A .

In this work, we have focused our attention to make a detail comparative study of
the preconditioned CGS, Bi-CGSTAB, TFQMR and GMRES for solving (1). The
considered preconditioners are ILU(m) (incomplete LU decomposition of level m) [3],
SSOR and ADI [1]. The performance of each iterative method combined with one of the
mentioned preconditioners is measured in terms of CPU time and number of iterations.

Importance and Parts of the Research:

Systems of linear equations given in (1) are frequently encountered in almost all
the scientific and engineering applications such as physics, mechanics, signal processing
and other applications of real life problems. For these reason we attempt to develop
iterative methods for solving such systems of linear equations.

1. Preconditioned Krylov subspace methods

The spectrum of the coefficient matrix A governs the rate of convergence of any
iterative method. By the use of preconditioning, this spectrum can be narrowed which then
promises much better convergence properties for iterative methods. As will be seen, the
choice of a preconditioner is crucial for the behavior of any iterative method, since it
influences the speed of convergence and their stability.

Let x, be an arbitrary initial guess for the linear system given by (1) and let

ro =b—Ax, be the corresponding residual vector. A Krylov subspace method is an
iterative scheme, which for an arbitrary choice of X, seeks approximate solutions of the
form x,exq +Ky(Ary), where K (Ar,) is the Krylov subspace
Ky (A 1p)=span {rO,ArO,AZrO,...,Ak‘er}. The motivation for preconditioning is to speed up

the convergence of an iterative solution of (1). Usually a preconditioner M; or M, is used
to multiply (1) on the left / right respectively so that the preconditioned system is

229

@8l Dl 8,88 gllid) e Dhaall OV sbeall Jea ol depuaall Casli S B (any 43)lia

M1 AM, (M, 2x)= M, b @)
where Mjand M, are left and right preconditioning matrices respectively. In this

work, the GMRES method is used with the right preconditioners.
2. Storage scheme
A short representation of storage technique described here is called as compressed
storage scheme [3]. The storage format is the most general; it makes absolutely no
assumptions about the sparsity structures of the matrix, and it does not store any
unnecessary elements. Storing given matrix A with compressed storage scheme requires
three one dimensional arrays VA, JA, and IA of length na, na and n+1, where n is the
number of rows and na is the total number of non-zero elements in the matrix A. The
array VA contains the non-zero elements of A stored row-by-row, JA contains the column
indices which corresponds to the non-zero elements in the array VA, and 1A contains n+1
pointers which delimit the rows of non-zero elements in the array VA, as illustrated below:
For example, let A be a square matrix of order 5.
a;; 0 a3 O 0
ay @y ay; 0 0O (3)
A= 0 0 agy 0 O
agg 0 0 ay ags
0 ag, O 0 ass

The arrays VA, JA and 1A are

rowl row2 ronwd row4 rows
—_—— Y Y ———
VA= a;; a3 ap; apy apz @aszz 8y 844 845 asy a8ss 4
JA = 1 3 1 2 3 3 1 4 5 2 5 ()

IA= 1 3 6 7 10 12
By convention, we define IA[n+1]=na-+1. The storage savings for this approach is
significant. Instead of storing n® elements, we need only 2na+n+1 storage locations.
The matrix (3) can not be factored, by using the above storage scheme, “in place” unless
fill-ins are accounted for when storage is created. For example, when (3) is factored, non-
zero numbers are assigned to a,,and ags, but neither of these elements appears in (4) as
illustrated, i.e., there is need to reallocating storage to make room for the fill-ins. In this
work we present a good choice for predicting fill-ins, using powers of a Boolean matrix.
3. Preconditioning
In this section, we discuss the use of preconditioning with the aim of reducing the
iteration steps required to obtain a good approximation to the solution of (1). It is clear that
the preconditioned iterative method to be successful, it is important that we choose the
correct preconditioner. We want to choose a preconditioner so that condition number

k(l\/l_lA)zl. The job of choosing the correct preconditioner is not easy. There are many
ways to choose a preconditioner. Usually, each of these different preconditioners works
best in some situation. All of these preconditioners approximate A1 to some degree. If we
could choose a matrix M such that MA =1, we could have k(M‘lA)zl and the
solution is attained in one step. Of course, we can not do this, because amount of work

involved in getting A~ will be excessively high in practical circumstances. Consequently,
preconditioning must be regarded as a trade off between the cost of constructing and
manipulating the preconditioner, and the acceleration of the iterative process. Most
preconditioners take in their application an amount of work proportional to the number of
variables. This implies that they multiply the work per iteration by a constant factor. On

230

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

the other hand, the number of iterations as a function of the matrix size is usually improved
by a constant. Certain preconditioners are able to improve on this situation, most notably of
them is the incomplete LU-decomposition.

(1). Incomplete LU Preconditioner (1LU)

Incomplete LU decomposition (ILU) is based on the LU-decomposition of the
coefficient matrix A. In constructing an ILU(m) (ILU of level m), we use The Powers of a
Boolean Matrix Strategy (PBS) for determining the pattern of non-zero elements of the
factors LU of a given matrix A; for more details, we refer the reader to [3].

Algorithm 1. PBS (The Powers of a Boolean Matrix Strategy)
Step 1.

Form the matrix B = [bijJ as

1 if a.: 20
b = N
! 0, otherwise

Step 2
Compute B?",(m >1).
1f B2 =B2" ", then
Form the set P ={ (i,j):bi(jzm) ~1}.

Else m=m+1, and go to Step 2.
From the Algorithm 1, it follows that the sparsity pattern of M=LUis

approximately equal to that of BZ". At any given iteration, if the calculated Boolean
matrix agrees with the matrix at the previous iteration, i.e. B™ =B™, then the process

has converged and we have the sparsity pattern of the LU factors. If B™ = B™L we get
the complete LU factors. Sparse LU - decomposition method, may give the solution.

However, using the complete LU factors (when B™ =B™1) is not desirable because it
would defeat the purpose of using an iterative method. Since the preconditioner can be

improved by allowing more fill-ins and its effectiveness depends on how well M™

approximates AL the Algorithm 1 can be terminated at a level m such that there is trade -
off between the computational requirements (both in terms of memory and CPU time) and
reducing the number of iterations. We show the efficiency of this method in section of
numerical experiments by taking numerical examples.

Once the non-zero structure of L and U matrices is obtained using Algorithm 1,
non-zero entries are then obtained by Doolittle's method [1], where all the diagonal entries
of L are 1.

A =LU gives
min(i, j)
aij= 2 likUy)
k=1
This gives the following explicit formulas for Ij;and uj;:

231

@8l Dl 8,88 gllid) e Dhaall OV sbeall Jea ol depuaall Casli S B (any 43)lia

k-1
aik = 2_liju
i1

ly=——"7-—"-—, i>k (6)
Ukk
i—1]

Uik Zaik—ZIijUjk, i<k
=1

While making an incomplete LU — factorization, we need to store only non —zero
entries of L and U. We define an extra array Diag [1...n] which points to the diagonal
elements of U in the array VA. The non —zero structure P of L and U is stored in JA,
IA and VA containing a;; = 0 as well as fill-ins. The following algorithm calculates the

incomplete decomposition. The Boolean variable revise is false for the standard
incomplete decomposition and true for the modified version such that row sums of the rest
matrix R = A—LU are equal to zero. The array Point [1...n] is an array of integers which
points to the entries in L and U of row i.
Algorithm 2. ILU (The incomplete LU- decomposition)
Fori=1TonDo
Point[i]=0;
Fori=2TonDo
{
Forv=I1A[i]+1TolA[i+1]-1 Do
Point[JA[V]]=vV;
Forv=I1A[i]ToDiag[i]-1Do
{
J=JAIV];
VA[v] =VA[V]/VA[Diag[j]l]1;
Forw=Diag[j]+1 TolA[j+1]-1 Do

k=Point[JA[wW]];
If (k>0) then
VA[k]=VA[k]-VA[V]*VA[wW];
Else
If (revised) then
VA[Diag[i]]=VA[Diag[i]]-VA[V]*VA[W];
HIEnd For w.
H/End For v.
Forv=I1A[i]+1TolA[i+1]-1 Do
Point[JA[Vv]]=0;
W/End For i.
The choice of P is extremely important. In practice, the non-zero pattern of L and
U is often taken the same as that of the original matrix. This has advantage that no
additional storage space is needed for the non-zero structure of the incomplete
decomposition. The ILU(m) decomposition is based on the structural strategy outlined
above for accepting fill-ins only to a certain level m. A level function is used in incomplete
factorization to control the number of fill elements.
The Algorithm 2 for computing L and U with PBS does produce an optimal
preconditioner.
(2). Symmetric Successive Over Relaxation (SSOR)
Iterative methods that can be expressed in the simple form

232

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

X|+1:NX| +C (7)
where neither N nor C depends upon the iteration count |, are called stationary
iterative methods. The stationary iterative methods, e.g., SSOR, and ADI, are rarely
competitive with Krylov iterative methods. So, all these methods are often employed as
preconditioners for nonstationery iterative methods. Since the SSOR scheme is a potential
solver for the problem, it should be clear that the SSOR scheme would provide us with an
approximation of AL Let
be the splitting of A into strictly lower, diagonal, and strictly upper triangular
matrices of A . To find a preconditioner, we must find a matrix M as approximation to A.
The residual correction method is to approximate A~* and define the iteration
Upg = U +Nn ©)

where 1, =b—Au, and N is some approximation to A,

If N=o(2-0)Ds+0U,) "Da(Dp+0Ls)", We get the Symmetric Successive Over
Relaxation scheme (SSOR), where o (omega) is a free parameter. Thus, when apply SSOR,

1 _
0)(2—_(0)(DA +03|—A)DA 1(DA +03UA)(U|+1—U|)= f.

SSOR preconditioner can be used to precondition Krylov subspace methods, such as CGS,
Bi-CGSTAB, TFQMR and GMRES and it requires no construction time.
(3). Alternative Direction Implicit Preconditioner (ADI)
The Alternating Direction Implicit (ADI) method is one of the stationary iterative
methods used as a preconditioner for nonsymmetric systems. Let (8) be the splitting of the

coefficient matrix A. If N=w(D +oU,) *Da(Da +oL)", we get the ADI scheme,

we are solving the equation N7(uj,;-u;)=

where » (omega) is a free parameter. As before, N is some approximation to A~ and L A
Da, and U, represent the lower triangular, diagonal, and upper triangular parts of

A respectively. The matrix N is a good choice because it is lower and upper triangular
matrices. Thus, when apply ADI, we are solving the equation

N‘l(u|+1—u,)=wl(DA+mLA)DA‘1(DA+coUA)(u|+1—u|)=r,. The ADI is probably best only

considered as a preconditioner in the Krylov subspace methods.

(4). The Preconditioning Step

The preconditioners M considered in this work are ILU, SSOR and ADI. It is
important that M~ is never explicitly computed. Alternatively, we have
z=M1v = Mz=v (10)

The preconditioning step (10) is an important step in any preconditioned iterative
method. We now describe the solution of (10) for different cases.

(1). Case 1. The Preconditioner M =LU .

The system (10) can be solved using CGS, Bi-CGSTAB and GMRES by the
following two steps:

Step 1: Forward substitution in LY =b.

Step 2: Back substitution in UX =Y .

where the Steps 1 and 2 are given in the Algorithms 3 and 4 respectively.

Algorithm 3. Forward Substitution.

233

@8l Dl 8,88 gllid) e Dhaall OV sbeall Jea ol depuaall Casli S B (any 43)lia

Y[1]=b[1];
Fori=2Ton Do
{

sum=0;
Forj=1A[i]To Diag[i]-1 Do
sum=sum+VA[J]*Y[JATL]]];
Y[i]=b[i]-sum;
Y/End For i.
Algorithm 4. Back Substitution.
X[n]=Y[n]/VA[Diag[n]];
Fori=n-1Down To 1 Do
{

suml=0;
Forj=Diag[i] TolA[i+1] -1 Do
suml=suml+VA[j]*X[JA[]j]l];
X[i]=(Y[i]-suml)/VA[Diag[i]];
H/End For i.
The system (2) can be solved using TFQMR as follows. Let Mbe a given
nonsingular nxn matrix which approximates in some sense the coefficient matrix A of

(1). Moreover, assume that M is decomposed in the form M =M;M,. Instead of solving the
original system (1), we apply the TFQMR algorithm to the equivalent linear system
A'y=b', where A’ =M*AMYb' =M (b—Axy)y=M,x. Here x, denotes some
initial guess for the solution of (1). The iterates y, and residual vector r, =b’—A'y, for
the preconditioned system A’y =b'are transformed back into the corresponding qualities
for the original system by setting X, = Mglyk and r, = Myry. For a case 1, the system (2)
can be solved using TFQMR by takingM; =L and M, =U in M =M;M,. Thus, the
system (10) can be solved by the Algorithm 3 (M, =L) and the Algorithm 4 (M, =U).

The preconditioning M = LU involves writing A as A=LU—-R, withR as error term.
However, the size of the entries in the error matrix for ILU(m) decreases as m increases.
When solving the system wusing the splitting A=LU-R, we consider the

system (LU) ™ Ax = (LU) b . The preconditioned matrix (LU)™A has to resemble the
identity matrix I as closely as possible. Since

(LU A = (LU) H(LU)-R]=1—(LU) ™R, then the matrix (LU)™R should be as small
as possible in some sense. We give three Theorems which state that (LU)_1 is a proper

approximation to A-1 if and only if H (LU)‘lRH is sufficiently small for some matrix norm

Theorem 1. Suppose the product LU is nonsingular and LU —R is a splitting of the
nonsingular nxn matrix A and the product LU is nonsingular. Then

| (wre] [o)A
cond (A) ~ H A—lu

sH (LUY'R H (11)

234

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

where cond(A)=||A||.HA‘1che condition number of A, and LU is the ILU(m)

factorization.
Proof.

(LU)'R=(LU)H(LU-A)=1-(LU) A= [A—l - (Lu)‘l}A

wrt-a

(
)R] <At - (Luy A= JAfa~]

271
by dividing the left and the right-hand side by ||A||.HA‘1H0ne obtains the first
inequality of (11). The second inequality follows from th following:
(LU) 'R = [A—l —(Lu)‘le
(LU)*RAT= [A—l —(Lu)‘l]
SRCORE COR oy

After division by HA‘lu the desired inequality is obtained. 0
Theorem 2. If x is the solution of (1) and X satisfies LUX =b. Then
Lt H(Lu)‘lRH (12)

]
Proof. We know that x—% = Ao —(LU) b= |~ — (LU) *ax. But
(LUY'R =(LUY (LU -A)=1—(LU) *A = At —(LU) T
Thus, we have x —X = (LU)™Rx . Taking the norm leads to the desired.
Theorem 3. Suppose LU —R is a splitting of the nonsingular nxn matrix A and

H AR H<1. Then

cond[(LU)’lA]s o H A_lRH

-] a7R|
where LU is the ILU(m) factorization.
Proof. Suppose LUx equals the null vector 0.

LUux=0 (A+Rx =0 (1+ ARk =0= [A7RY = x| = x| <[AR
Because H AR H<1 this implies that | x| equals 0 so x = 0. This proves that LU

is non-singular.
cond[(LU)_lA]= cond [(A n R)_]'A]z cond[(| + A—lR)—l}

(l +A‘1R)_1‘ (l +A‘1R)_1 (1+HA—1RH)

HI +A—1RH <

235

@8l Dl 8,88 gllid) e Dhaall OV sbeall Jea ol depuaall Casli S B (any 43)lia

-1
By a Theorem of Atkinson [4] H (I+A‘1R) H< ! This completes the

1-|aR]
proof.
The Theorem 3 states that we can make R as small as possible and this will have

a positive effect on the condition of (LU)™A.

(I1). Case 2. The Preconditioner M = SSOR and ADI.
The preconditioning step in the CGS, Bi-CGSTAB and GMRES methods involves
the preconditioner SSOR is the step (10). Hence, we must solve the equation

1
Mz=——
: o2-0)

expressed as

(Dp+0LA)DA (Da +0Ux)z=v. The solution to this equation can be

(Dp+oLp)Z=0(2-0)v

The speed of convergence of SSOR depends critically on @ ; the optimal value for @

may be estimated from the spectral radius of the Jacobi iteration matrix
Ry =-Dal(La+Upn).

Similarly, The preconditioning step in the CGS, Bi-CGSTAB and GMRES that

involves the preconditioner ADI is the step (10). Hence, we must solve the equation

(13)

Mz:l(DA +oLo)DA (D +®Up)z=V. The solution to this equation can be expressed
(0]

as
(Dp +0LA)Z =0V
(Dp +0Up)z=DpZ
The systems (13) and (14) can be solved by using Algorithm 3 and Algorithm 4
respectively because D +oLand Dp +oU 4 are lower and upper triangular matrices
respectively.

The optimal value for o is given by

P — (15)

1++20-25)
where A3 is the maximum eigenvalue of the matrix R;[5]. Optimum convergence

rate may be achieved for a value of relaxation factor o selected for various computer runs,
and no economical expressions for estimating o would be suggested. In the present work,
the chosen value of ® is obtained by the procedure explained in [5].
Note. The preconditioning step in the TFQMR that involves the preconditioners
SSOR or ADI is the step (10). In the case SSOR is preconditioner, we have
M; :;(DA +ola) My = D,_Al(DA +oUpu)
o(2- o)
Similarly, in the case ADI is preconditioner, we have

M, :1(DA +oLa) M, =DA(Da+0UpL)
()]

(14)

236

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

4. Numerical Experiments
This Section compares the numerical efficiency of the ILU(m) preconditioner with
SSOR and ADI. Different implementations of the CGS, Bi-CGSTAB, TFQMR and
GMRES(10) will be compared in terms of CPU times and number of iterations. The
iterative methods have been implemented as C++ codes using double precision accuracy.
The five problems reported herein were solved on an IBM Compatible PC with Pentium IV
processor (512 RAM). For our test runs, we always chose X, as initial guess. For all tests,

the right-hand side b was set to Ax, where X = (1,1,...,1)T. The iterations were stopped as

I . . .
soon as HSSZ].OS. Finally, the convergence plots for the residual norms, in a
f'o
logarithmic scale, versus the iteration number are given.

Results and Discussions:
In this Section, we introduce some examples to show the efficiency of the
suggested direct and iterative methods for solving (1).

Example 1 [2]. Let us consider the matrix of size n =1000
S i
-1 a 1
-la1l

-1 a 1
L _1 a_
The example is studied here to give due importance to GMRES(10) when it is used
with a suitable preconditioner like ILU. Results are given in the Table (1), which lists the
number of iterations, the solution CPU time in seconds and the relative residual error. It is
interesting to note that the ILU preconditioned GMRES(10) and Bi-CGSTAB do not
stagnate and produce very good results. It has been found that the performance of the 1LU
preconditioned GMRES(10) is the best, where the solution is given in two steps. However,
the ILU preconditioned CGS and TFQMR algorithms stagnate and do not show any sign of
convergence. Similarly when we use SSOR and ADI preconditioners, all proposed iterative
methods get stagnated and do not converge. In order to show the convergence
characteristics of the iterative solution methods, Fig. (1) presents the evolution of the
relative residual norm for CGS, Bi-CGSTAB, TFOQMR and GMRES(10) with ILU
preconditioner. It is interesting to note that while the CGS and TFQMR are stagnating the
GMRES(10) and Bi-CGSTAB residuals are decreasing.

Example 2 [3]. Consider the tridiagonal square matrix of size n =1000.

51 3
2 51 3
2 513

2 51 3

237

@8l Dl 8,88 gllid) e Dhaall OV sbeall Jea ol depuaall Casli S B (any 43)lia

This example is chosen here to show that the performance of ADI preconditioner is
better than that obtained by SSOR in all considered methods. Table (2) presents, under the
same headings as Table (1), the relative residual error, the solution iterations and CPU time
in seconds of this problem. Here, the performances of the ILU and ADI preconditioners are
better than that one of SSOR in all methods considered in this work. The performance of
SSOR preconditioned Bi-CGSTAB is not good in comparison to the other methods. The
preconditioned GMRES(10) algorithm shows the best performance, with a speed up
against the Bi-CGSTAB of about 2. Specific comparison shows for the iterative methods
considered with the ILU preconditioner (or ADI) have an iteration number of the order of
one-two to one-third of that with SSOR preconditioner. In Fig. (2) (for SSOR) and Fig. (3)
(for ADI), we show the convergence curve for the considered methods. As the plot
indicates, the convergence is faster with the GMRES(10).

Example 3 [1]. Let A isa 200x 200 Toeplitz matrix of the form

1 1 11 0 . .0
-11 11 1 0 0
-111 1 1 . 0

0

1

-1 1 1 1
-1 1 1
L -1 1,
Table (3) presents the solution CPU time in seconds, number of iterations and the
relative error in getting the solution of (1). This example is given here to show that the
performances of ADI and SSOR preconditioners approximately are the same in all
considered methods. Again, the performance of the ILU preconditioned GMRES(10) is
much better than that of the other methods where the solution is given in one step. Specific
comparison shows that for the considered iterative methods with ILU preconditioner have
an iteration number of the order of one-fifth to on- sixth of that with SSOR (or ADI). But
the convergence is faster with the GMRES(10). Finally, Fig. (4) (for SSOR) and Fig. (5)
(for ADI) show the evolution of the relative residual norms for iterative methods. It is
interesting to note that while the CGS and TFQMR residuals present oscillations the
GMRES(10) residuals are monotonically decreasing.
Example 4 [3]. The matrix A is given by the block tridiagonal matrix

E -l (4 «
-1 E -l B 4 a
A= E=
S E 54 a
L -1 E | L B 4]
and a=-1+6,=-1-8. The matrices represent the 5- point discretization of the
02 02 0 . . .
operator -— -—+y_—ona rectangular region. Experiments are done for the matrix A
ox- oy- 0X

of size n, where n=400, n, =dim(E)=20, na=1920. Computations are done for

0=0.5. Table (4) and Table (5) list the non-zero entries and fill-ins in constructing L and
U, the number of iterations, solution CPU time in seconds and the relative residual error.
From the table, it has been seen that the performance of the ILU(2) preconditioner in the
GMRES(10) method is the best. The solution is given in one step (ILU(2)) and two steps
(ILU(1)). Increasing m for an ILU(m) factorization reduces the total cost of finding an

238

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

accurate solution (at least for small m). The performance of SSOR and ADI preconditioned
iterative methods is much better than that obtained by ILU(0). But the performance of ADI
preconditioner is better than SSOR in all considered iterative methods. The ADI and SSOR
preconditioned GMRES(10) algorithm is two times faster than CGS, Bi-CGSTAB and
TFQMR. However, the performance of the preconditioned GMRES(10) is the best among
the considered iterative methods. The number of iterations by using GMRES(10) is much
less. Finally, in order to show the convergence characteristics of the proposed iterative
methods. Fig. (6) (for ILU(0)), Fig. (7) (for ILU(1)), Fig. (8) (for SSOR), and Fig. (9) (for
ADI) show the relative residual norms for the iterative methods, where again the good
properties of GMRES(10) can be seen.

Example 5 [3]. The matrix A is given by the block tridiagonal matrix

[E D,) [a) b

and a=-1+8,p=-1-6 and a=-1+§;,b=-1-8;, E is same as defined in Example 4.

The matrix A represents the 5- point discretization of the operator —ﬂ—ﬂ+ i+ 0

Ti

oxt oy’ "ox ay

on a rectangular region. We have chosen the values of 6=25 and § =20, where
No :dim(E):ZO,n =400,na=1920 . Table (6) and Table (7) list, under the same heading as

Table (4) and Table (5), the non-zero entries and fill-ins in constructing L and U
decomposition, solution CPU time in seconds, iteration number and the relative residual
errors. From the tables, it has been seen that the performance of the ILU(m) (m=1,2) in the
GMRES(10) method is the best. The number of iterations by GMRES(10) solver is much
less. The solution is given in two steps (ILU(1)) or one step (ILU(2)). In this example, the
performance of ILU(O) is better than that obtained by SSOR and ADI in CGS, Bi-
CGSTAB, and TFQMR. The performance of the ADI preconditioner is better than the
SSOR preconditioner in CGS, Bi-CGSTAB and TFQMR. The ADI and SSOR
preconditioned GMRES(10) algorithm is 2 times faster than CGS, Bi-CGSTAB and
TFQMR. Specific comparisons show that for the considered methods with ADI (or SSOR)
have an iteration number of the order of one- fifth to one-sixth with GMRES(10). Finally,
in order to show the convergence characteristics of the proposed iterative solution
methods. Fig. (10) (for ILU(0)), Fig. (11) (for 1LU(1)), Fig. (12) (for SSOR) and Fig. (13)
(for ADI) show the relative residual norms for the iterative methods. Again the good
properties of GMRES(10) can be seen.

239

AN

S 5,5 s lalnal e ddaall eV aleal) Jas Jal deyeall Casli S 3k (s d55l6e

Table (1). No. of Iterations, CPU time and R. Residual Norms for Examplel, o = 0.95.

Method Precond. | Non-zeros | No. of CPU Relative
& fill-ins | Iteration time Residual Norms
CGS ILU 1980 - - -
SSOR 4753 - - -
ADI 6375 - - -
Bi-CGSTAB ILU 1980 3 0.054945 | 3 286046 x 1010
SSOR 4753 - - -
ADI 6375 - -)
TFOMR ILU 1980 - - -
SSOR 4753 - - -
ADI 6375 - - -
GMRES(10) ILU 1980 2 0.054945 | 3 891019x 10715
SSOR 4753 - - -
ADI 6375 - - -

Table (2). No. of Iterations, CPU time and R. Residual Norms for Example 2, @ =0.95.

Method Precond. | Non-zeros No.of | CPUtime | Relative Residual
& fill-ins Iteration Norms

CGS ILU(0) 1980 3 0.054945 | 5.741227 <1014

SSOR 4753 6 0.054945 3.449238 <1011

ADI 6375 3 0.054945 1.479128 <1011

Bi-CGSTAB ILU(0) 1980 3 0.054945 | 8.178668 <10~°

SSOR 4753 18 0.109890 | 8.762133x<10~°

ADI 6375 8 0.054945 1.288786 <x10°

TFQMR ILU(0) 1980 2 0.054945 9.876344 <1011

SSOR 4753 5 0.109890 | 1.096002~<10°

ADI 6375 3 0.054945 | 2.859933.<10—°

GMRES(10) ILU(0) 1980 1 negligible | 2.153409x<10-1°

SSOR 4753 4 0.054945 | 1.920939<10°

ADI 6375 3 0.054945 | 11663101013

Table (3). No. of Iterations, CPU time and R. Residual Norms for Example 3, ® =1.75.

Method Precond. | Non-zeros No. of | CPUtime | Relative Residual
& fill-ins Iteration Norms

CGS ILU(0) 1980 3 negligible | 1.431621x<1014
SSOR 4753 13 0.054945 2.873238x10°

ADI 6375 14 0.054945 | 9634591 x10-10

Bi-CGSTAB ILU(0) 1980 3 negligible | 6.337973<10°
SSOR 4753 28 0.109890 | 7.709481<10—°

ADI 6375 30 0.109890 | 5.890148 <102

TFQMR ILU(0) 1980 3 0.054945 8.346323 <1014
SSOR 4753 14 0.109890 | 8.4247764x10~°

ADI 6375 15 0.109890 1.867795x 1010

GMRES(10) ILU(0) 1980 1 negligible | 1.945635x1012
SSOR 4753 5 0.054945 | 4.010245x<10—°

ADI 6375 5 0.054945 | 29841961016

240

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

Table (4). No. of Iterations, CPU time and Relative Residual Norms for Example 4.

Method Precond. | Non-zeros | No. of | CPUtime | Relative Residual
& fill-ins | Iteration Norms
CGS ILU(0) 1980 12 0.109890 | 4.220049 10715
ILU(1) 4753 4 0.054945 | 1.100062x10714
ILU(2) 6375 3 0.054945 | 1.313719x10713
Bi-CGSTAB | ILU(0) 1980 14 0.109890 | 8.050642 <10 1%
ILU(1) 4753 5 0.054945 | 1.465550<10—°
ILU(2) 6375 5 0.054945 | 8.913006x<1011
TFQMR ILU(0) 1980 12 0.109890 | 2.003919x10712
ILU(1) 4753 3 0.054945 | 9.300247 <10—°
ILU(2) 6375 2 0.054945 | 2.486359<10°
GMRES(10) | ILU(0) 1980 10 0.109890 | 7.736185x10°17
ILU(1) 4753 2 negligible | 2.901990x10-16
ILU(2) 6375 1 negligible | 1.426597 <1013
Table (5). No. of Iterations, CPU time and R. Residual Norms for Example 4, =1.5.
Method Precond. No. of CPU Relative
Iteration time Residual Norms
CGS SSOR 10 0.109890 | 4.961067 <1012
ADI 8 0.109890 | 6.351351 <1013
Bi-CGSTAB | SSOR 14 0.109890 | 7.932627 <10°
ADI 11 0.109890 | 8.646714 <1010
TFQMR SSOR 9 0.109890 | 1.526661<10~°
ADI 6 0.109890 | 5.672042 <10°
GMRES(10) | SSOR 2 0.054945 | 3.372888 <10°
ADI 2 0.054945 | 1.310233 <1010

Table (6). No. of Iterations, CPU time and R. Residual Norms for Example 5.

Method Precond | Non-zeros | No. of CPU Relative Residual
. & fill-ins | Iteration time Norms
CGS ILU(0) 1980 11 0.10989 | 5.741227 <1071°
ILU(2) 4753 3 0 3.180915x1012
ILU(2) 6375 2 0.05494 | 1.112380x1022
5
0.05494
5
Bi-CGSTAB | ILU(0) 1980 12 0.10989 | 6.063143<10°°
ILU(2) 4753 4 0 9.212743 <10°
ILU(2) 6375 3 0.10989 | 3.216868 <1017
0
0.05494
5
TFOMR ILU(0) 1980 10 0.10989 | 4.608243x10°1°
ILU(2) 4753 3 0 3.364870
ILU(2) 6375 2 0.10989 <1012

241

AN

S 5,5 s lalnal e ddaall eV aleal) Jas Jal deyeall Casli S 3k (s d55l6e

0 1.324277 <1023
0.10989
0
GMRES(10) | ILU(0) 1980 9 0.10989 | 8.736124 <10 12
ILU(L) | 4753 3 0 1.937795
ILU(2) 6375 1 0.05494 <1017
5 1.610924 < 10-15
0.054945

Table (7). No. of Iterations, CPU time and R. Residual Norms for Example 5, ® =0.8.

Method Precond. No. of CPU Relative
Iteration time Residual Norms
CGS SSOR 16 0.054945 | 6.083266 <1011
ADI 14 0.054945 | 6.639469 <1014
Bi-CGSTAB | SSOR 18 0.109890 | 7.286967 <10—°
ADI 15 0.054945 | 7.580448 <10°
TFQMR SSOR 14 0.109890 | 6.356598 <10~°
ADI 13 0.109890 | 3.062651 <101°
GMRES(10) SSOR 4 0.054945 | 5.349289<10°
ADI 4 0.054945 | 2.153155<1010°
—e— GMRES(10)
—a— Bi-CGSTAB
—— CGS
4 —— TFQMR
£
S o
©
3 4
é -12
3 -16 4 : | :
1 6 11 16
No. of iterations

Fig.(1). Example 1, N =1000, a =107%, LU preconditioner.

242

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

—e— GMRES(10)
0 —=— Bi-CGSTAB
——CGS
- —— TFQMR
o
= -10
=}
S
g -15
§ -20
S
S .25
-30 T T T T T T T
1 4 7 10 13 16 19
No. of iterations
Fig.(2). Example 2, N =1000, SSOR preconditioner.
—e— GMRES(10)
5 —s Bi-CGSTAB
——CGS
2 0 —— TFOMR
2 5
E
3 -10
8
2 .15
©
S -20
S
a -25
-30 T T T T T 1
1 3 5 7 9 11
No. of iterations
Fig.(3). Example 2, N =1000, ADI preconditioner.
—e— GMRES(10)
5 —=— Bi-CGSTAB
——CGS
o 0 —— TFQMR
£
2
£ 5
>
S
2 -10
S 15
(@)
o
4 20
-25 T T T T T T T T T T 1
1 4 7 10 13 16 19 22 25 28 31
No. of iterations

Fig.(4). Example 3, n = 200, SSOR preconditioner

243

éd)ﬂ‘ JM‘\HEJQASEJLW\)::QM\ deu\daada.‘:{.c‘)ﬂmﬂ ujlvs &b}:uau:\qjm

—e— GMRES(10)
0 —s— Bi-CGSTAB
——CGS
—»—TFOMR
(2]
S
2 -10
©
=)
S
8
§. -20
(=]
(o]
-
-30 T T T T T T T
1 6 11 16 21 26 31
No. of iterations
Fig.(5). Example 3, n = 200, ADI preconditioner.
—e— GMRES(10)
w10 —s— Bi-CGSTAB
= ——CGS
- TEOMR
2 o
z
3 -10 -
B
(]
= 20 A
o
S -30
o
2
'40 T T T T 1
1 4 7 10 13 16
No. of iterations
Fig.(6). Example 4, n = 400, I1LU(0) preconditioner.
—e— GMRES(10)
0 —s— Bi-CGSTAB
= ——CGS
S ——TFQMR
< .10
T
>
o
@ -20
S
9 -30
(@]
(@]
-
'40 T T T T T 1
1 3 5 7 9 11
No. of iterations

Fig.(7). Example 4, n = 400, ILU(1) preconditioner.

244

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

—e— GMRES(10)
20 —a— Bi-CGSTAB
—— CGS
g . —x— TFOMR
5 10 4
£
g (O
© ‘\
[}
(O]
o -10 4
o
=
o -20 4
(@]
-
'30 T T T T 1
1 4 7 10 13 16
No. of iterations

Fig.(8). Example 4, n = 400, SSOR preconditioner.

—e— GMRES(10)
10 - —= Bi-CGSTAB
] ——CGS
2 —»— TFQMR
S o1
S '\
S
§ -10
©
S 20 1
(@2}
(@)
|
-30 T T T T
1 4 7 10 13
No. of iterations
Fig.(9). Example 4, n = 400, ADI preconditioner.
—e— GMRES(10)
5 —s—Bi-CGSTAB
—a—CGS
0 —%— TFQMR
E o
S
c
S 5
i)
8
< -10
(o]
S
2 -15
—
-20 : ‘ ‘ ‘
1 4 7 10 13
No. of iterations

Fig.(10). Example 5, n =400, ILU(0) preconditioner.

245

éd)ﬂ‘ JM‘\HEJQASEJLW\)::QM\ deu\daada.‘:{.c‘)ﬂmﬂ ujlvs &b}:uau:\qjm

—e— GMRES(10)
0 —s— Bi-CGSTAB
—s—CGS
” —%— TEOMR
=
5]
S -6
=z
=}
S
¢
S 12
S
(o))
o
-18 A : : : ‘
1 3 5 7 9
No. of iterations
Fig.(11). Example 5, n =400, ILU(1) preconditioner.
—e— GMRES(10)
10 —s— Bi-CGSTAB
g —s—CGS
= 5 ¥— TEOMR
(@]
c
= 0
>
S 5
8
~ -10
S
o -15
—
g -20
-
_25 T T T T T T T
1 4 7 10 13 16 19
No. of iterations
Fig.(12). Example 5, n = 400, SSOR preconditioner.
—e— GMRES(10)
20 - —a— Bi-CGSTAB
—s—CGS
(2] —_—
2 5. TFOMR
o]
[
c
>
X}
(2]
g
©
o
—
(@]
o
-
'40 T T T T T 1
1 4 7 10 13 16 19
No. of iterations

Fig.(13). Example 5, n =400, ADI preconditioner.

246

Tishreen University Journal. Bas. Sciences Series 2008 (4) 231} (30) alaall Zaulu) aslall @ (35 daala dlaa

Conclusions and Recommendations:

We considered some preconditioned Krylov iterative methods for solving large
sparse non-symmetric linear systems of equations. The relative performance of three
preconditioners, namely ILU(m), SSOR and ADI in the CGS, Bi-CGSTAB, TFQMR and
GMRES(10) methods is shown in the Tables. Numerical experiments have shown that the
ILU(m) (m=1,2) preconditioned GMRES(10) requires less iterations to converge.
Increasing m for ILU(m) factorization reduces the total cost of finding an accurate solution
(at least for small m), even though the cost of finding the approximation increases. The
ILU(m) (m=1,2) preconditioner is found to be the best. That is reasonable convergence
was obtained for m > 2. However, the total cost of finding the solution was reduces as m
increased. Finally, the performance of preconditioned GMRES(10) was the best when it is
combined with a suitable preconditioner. The GMRES(10) gives us a good performance
and has fast convergence with all considered preconditioners.

REFERENCE:

[1]. SAAD, Y. lterative Methods for Large Sparse Linear Systems, 1% edition, PWS
Publishing Company, New York, 1995, 879.

[2]. BROWN, P. N. A theoretical comparison of the Arnoldi and GMRES algorithm,
SIAM J. Sci. Stat. Comp. U. S. A., Vol. 12, No. 25, 1991, 58-78.

[3]. MITTAL, R. C. and AL-KURDI, A. H. An efficient method for constructing ILU
preconditioner for solving large sparse non-symmetric linear systems by GMRES method,
Computers Math. Appl. U. S. A., Vol. 45, No. 23, 2003, 1757-1772.

[4] ATKINSON, K. E. An Introduction to Numerical Analysis, ond Edition, Wiley,
Chichester, New York, Brisbane, Toronto and Singapore, 1988, 570.

[5]. THOMAS, J.W. Numerical Partial Differential Equations, 2" edition, Springer-
Verlag, New York, 1999, 986.

247

£ . - .- . - - . s . *.&A
AN Slea! 58S 5ylaliall e Abadll eV alaall Jan Jal de puuall ol S Sk ey 4y

248

