الظواهر السبينية في تفكك –β النووي كتلة النترينو الإلكتروني السكونية وقانون انحفاظ –T

الدكتور تيسير معلا* الدكتور مفيد عباس* هشام جودت صقر**

(تاريخ الإيداع 26 / 2 / 2008. قُبِل للنشر في 7/7(2008)

□ الملخّص □

أدت دراسة تفكك بيتا النووي لاكتشاف شكل جديد من أشكال التأثيرات المتبادلة في الطبيعة (تاثيرات متبادلة ضعيفة)،الذي قاد لاكتشاف جسيم جديد يدعى النترينو،الذي أسس لظهور فرع جديد في الفيزياء يدعى فيزياء النترينو، نظرا للدور الذي يلعبه في فيزياء الكون.كما تم تحديد بنية التيارات النووية الضعيفة.أما حتمية انحفاظ القوانين الفيزيائية فكانت دوما أداة لاستنباط قراءات جديدة بل ولادة نظريات جديدة لتوسيع فهمنا للكون.في هذا العمل تم دراسة لاتغير عبار dw_{β} (احتمال التفكك) بالنسبة لدوران الزمن $dw_{\nu_{e}}$ وذلك للارتباط التام لهذه الظاهرة مع بنية التيار النووي. كما تم تحديد قيمة كتلة النترينو الإلكتروني السكونية $dw_{\nu_{e}}$ في بعض مجالات طيف الطاقة الالكتروني، وذلك اعتمادا على أحدث القيم التجريبية لمعامل الارتباط $dw_{\nu_{e}}$.

استعاب استعامیه و احدمان العدم و سریدو و دوران الرمن و دانیرات مبادله صنعیعه و معامات الدربات.

مجلة جامعة تشرين للبحوث والدراسات العامية - سلسلة العاوم الأساسية المجلد (30) العدد (30) العدد (30) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (30) No. (3) 2008

^{*} أستاذ . قسم الفيزياء . كلية العلوم . جامعة تشرين . اللاذقية . سورية.

^{**} طالب دراسات عليا (ماجستير) . اختصاص فيزياء إشعاعية . قسم الفيزياء . كلية العلوم . جامعة تشرين . اللاذقية . سورية.

^{*} بحث نظري اجري في قسم الفيزياء . كلية العلوم جامعة تشرين بدءاً من 2006

Spin phenomena in Nuclear β- Decay The electronic Neutrino's mass and Conservation Law-T

Dr. T.Moualla*
Dr. M. Abbas*
Hisham Jawdat Saker**

(Received 26 / 2 / 2008. Accepted 7/7/2008)

L ADSINACI L		ABS	TRA	CT	
--------------	--	-----	-----	----	--

The study of Beta-decay led to establishing a new form of interaction in the nature (weak interactions), which resulted in discovering a new particle which has been named neutrino. The neutrino established a new branch of physics named neutrino physics, because of its importance in cosmic physics and in specifying the structure of weak nuclear currents. The certainty of conservation laws in physics has always been a tool to take new view, and to create modern theories to enhance our understanding of the universe. In this research, we have studied an invariant equation DW β (decay probability) in relation to the time rotation, depending on the strong relation between this phenomenon with the structure of nuclear current. Also, based on the most recent experimental value for the correlation coefficient D, we have found the value of the rest electronic neutrino's mass (m_{ve}) in some intervals of the spectrum of electronic energy.

Key Words: Beta decay, Decay probability, Neutrino, Time rotation, Weak interactions, Correlation coefficient.

مقدمة:

^{*} Professor, Department of Physics, Faculty of Sciences, University of Tishreen, Lattakia, Syria.

^{**} Postgraduate student, Department of Physics , Faculty of Sciences, University of Tishreen, Lattakia, Svria

^{*} theoretical search has been done in physics department – science faculty tishreen university starting 2006.

تعدّ مسألة تفكك $-\beta$ النووي من أكثر مسائل النشاط الإشعاعي أهمية حيث تطلب فهم تلك الظاهرة قرابة الستون 0.4 عاماً من البحث (1896 - 1961) . أثبت العالم 1916 عام 1916 أن طاقة الالكترون المنطلق تساوي 0.4 من طاقة التفكك (1896 - 1866) . صرح بعد ذلك بور بأن تفكك $-\beta$ - النووي يخرق قانون حفظ الطاقة . قدم باولي المنعقد في السويد ، يقترح آلية باولي المنعقد في السويد ، يقترح آلية باولي المنعقد في السويد ، يقترح آلية جديدة لحدوث تفكك $-\beta$ -النووي (تتحصر بانطلاق جسيم معتدل الشحنة مع الالكترون سبينه $\frac{1}{2}$ وكتاته صغيرة جداً بعرمي (1806 - 1866) المتبادلة الضعيفة (تصف تفكك 1806 - 1866 - 18

$$H_{\beta} = \sum_{J=S,V,T,A,P} C_J \left(\overline{\psi_p} \hat{O}_J \psi_n \right) \left(\overline{\psi_{e^-}} \hat{O}_J \psi_v \right)$$

حيث:

أثيتت
$$\hat{O}_{\scriptscriptstyle S}=I$$
 , $\hat{O}_{\scriptscriptstyle V}=\gamma^{\mu}$, $\hat{O}_{\scriptscriptstyle A}=\gamma^{\mu}\gamma^5$, $\hat{O}_{\scriptscriptstyle T}=\sigma^{\mu\nu}$, $\hat{O}_{\scriptscriptstyle P}=\gamma^5$

الدراسات النظرية والتجريبية حتى عام 1956 أن مركبتين فقط تساهمان في التأثيرات المتبادلة الضعيفة وهما الكمون الشعاعي \hat{O}_V و الكمون المحوري \hat{O}_A . حيث أصبحت تسمى نظرية $\hat{V} = 0$ للتأثيرات المتبادلة الضعيفة قدم العالم الباكستاني محمد عبد السلام رؤية أكثر دقة لآلية حدوث تفكك - \hat{S} النووي ، فيما سمّي بالنموذج المعياري (نموذج واينبرغ . عبد السلام) [4] .

السؤال المطروح ما هو حال قوانين الانحفاظ في تفكك - β النووي ؟

وما هي قيمة كتلة النترينو الإلكتروني السكونية $m_{
m v}$?

لعبت قوانين انحفاظ المقادير الفيزيائية (كمية الحرارة ، كمية الحركة ، الطاقة ،...)، دوراً هاماً في صياغة فهمنا للعالم الذي نعيش فيه ، وقدمت استنتاجات نظرية ، أثبتت التجربة صحتها ، مما عمق دورها في فهم آلية نشوء الكون (نظرية الانفجار العظيم) .

نشير أولاً إلى ظهور مقادير فيزيائية جديدة في عالم الفيزياء النووية والجسيمات الأولية (الأعداد الكوانتية المختلفة ...) والتي يجب أن تبقى مصانة (محفوظة) في أي تفاعل كان ، كما قدمت النظرية النسبية الخاصة لاينشتاين (1905) مفهوماً هاماً، وهو لا تغير المقادير الفيزيائية والقوانين الرياضية التي تصفها مع عملية دوران $\stackrel{\leftarrow}{r}$ والزمن t في الجمل العطالية المختلفة بالنسبة لتحويلات لورانتز [5].

كما قدمت نظرية ديراك وصفاً رياضياً دقيقاً لآلية تغير التابع الموجي $\Psi(\vec{r},t)$ مع دوران جملة الاحداثيات (Parity P (مع ينتج الشحنة المرافقة charge conjugation) C) وتحولات النوعية (الزوجية) (\vec{r},t) ديث ينتج الشحنة المرافقة (\vec{r},t) ديث ينتج الأرمن T بعكسه او قلبه (time reversal invariance) كما يلي (\vec{r},t)

$$\psi \xrightarrow{C} \gamma^{2} \psi^{*} ,$$

$$\Psi_{(\vec{r},t)} \xrightarrow{P} i \gamma^{0} \psi_{(-\vec{r},t)} ,$$

$$\Psi_{(\vec{r},t)} \xrightarrow{T} -i \gamma^{1} \gamma^{3} \psi^{*}_{(\vec{r},-t)} ,$$

$$\psi_{(\vec{r},t)} \xrightarrow{CPT} i \gamma^{5} \psi_{(-\vec{r},-t)} .$$
(1)

. حيث $\Psi_{(ec r,t)}$ تابع ديراك . حيث $-\gamma_{\mu}$

أثبت العالمان Lee T.D.Yang C.N عام 1956 أن تفكك -β يخرق قانون حفظ النوعية [7]. أما دراسة قانون انحفاظ الشحنة C فأدى إلى تجزأة التيار الهدروني إلى قسمين [3] :

1. تيارات النوع الأول (التي تتغير إشارة معاملات البنية فيها عند إجراء التحويل على توافق) .

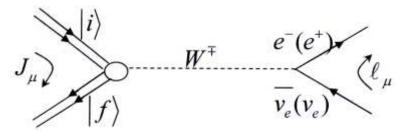
2. تيارات النوع الثاني (لا يوجد توافق في تغير إشارة معاملات البنية عند إجراء التحويل). وبقيت مسألة لا تغير عبارة احتمال التفكك (dw_{β}) بالنسبة لدوران الزمن t موضع اهتمام الباحثين التجريبيين حتى وقتنا الحاضر t. [10]

($ar{S}_\ell$ ، الجسيمات الأولية (استقطاب النوى $ar{S}_\ell$ ، الجسيمات الأولية و أثبتت الدراسات النظرية ارتباط هذه الظاهرة بالظواهر السبينية (استقطاب النوى .< 2.7 e.V m_{v_e} [11] . أما كتلة النترينو فمازالت موضع بحث جدّي حتى تاريخه .

هدف البحث وأهميته:

 dw_{β} عبارة عبارة لا تغير عبارة C_{V} , C_{A} ، وذلك من خلال دراسة لا تغير عبارة عبارة . (احتمال التفكك) بالنسبة لدوران الزمن \hat{T} ، وفق تحويلات لورانتز

D اعتماداً على العلاقة الرياضية التي تحدد الثابت D باعتماداً على العلاقة الرياضية التي تحدد الثابت m_{v_e} . D وبالاستفادة من أحدث القيم التجريبية للثابت


طريقة البحث ومواده:

تمثل عبارة احتمال التفكك dw_{β} للنوى أهم مقدار فيزيائي لوصف تلك الظاهرة ودراستها، ويتم الحصول عليها باستخدام نظرية فيرمي الكوانتية والنظرية المعيارية (عبد السلام – واينبرغ).

لهذه الغاية، استخرجنا في هذا العمل العلاقة الرياضية التي تصف احتمال التفكك $\mathrm{d}w_{eta}$ للنوى المستقطبة \widetilde{S} آخذين بعين الاعتبار كتلة النترينو الإلكتروني السكونية m_{v_e} . يعبر عن تفكك $-\beta$ النووي بالعبارة العامة التالية

$$X(A,Z) \xrightarrow{W^{\mp}} X(A,Z \pm 1) + e^{-}(e^{+}) + \stackrel{-}{v_e}(v_e)$$
; (2)

206

 $= [2] (q^2/M^2) << 1$ يصف تابع هاملتون التالي تفكك - β النووي في التقريب اللانسبي

$$\langle f|H|i\rangle = \frac{G_F}{\sqrt{2}}J_{\mu}\ell_{\nu} + h.c,$$
 (3)

: هنا - التيار النووي، الذي يعطى بالصيغة العامة التالية - $J_{\scriptscriptstyle \scriptstyle I}$

$$J_{\mu} = \begin{cases} -\lambda < f | \overrightarrow{\sigma} | i > \equiv M_{GT} : \mu = 1.2.3 \\ < f | I | i > \equiv M_F; \mu = 0 \end{cases}$$

$$\frac{C_A}{C_V} = \left| \frac{C_A}{C_V} \right| e^{i\varphi} = |\lambda| e^{i\varphi} \qquad ; \qquad \lambda = -1.2740 \pm 0.0021 \qquad [12]$$

النيووي – M_{GT} ، توافق انتقال غاما – تيلير النيووي – M_{GT} ، توافق انتقال غاما – تيلير النيووي – M_{F} ، M_{F} . M_{F} ، M_{F} ،

$$\ell_{v} = \overline{u_{e}} \gamma_{\mu} (a_{v} + a_{A} \gamma^{5}) u_{v} \qquad . \tag{5}$$

حبث :

نحصل باستخدام خواص مصفوفات ديراك وتابع كثافة التيارات ho_i [13]، على العبارة الرياضية العامة الاحتمال تفكك - ho_i النووى ho_i :

$$\begin{split} dw_{\beta^{\mp}} &= \frac{G_F^2 a_V^2}{(2\pi)5} d\Omega_e d\Omega_v dE_e P_e E_e F(Z, Ee). \\ &(\Delta E - E_e) [(\Delta E - E_e)^2 - m_v^2]^{\frac{1}{2}}.\eta \{1 + a \frac{(\vec{p}_e \vec{p}_v)}{E_e E_v} + \\ &(^{6)} + C d_J (\frac{1}{3} \frac{(\vec{p}_e \vec{p}_v)}{E_e E_v} - \frac{(\vec{P}_e \vec{J})(\vec{P}_v \vec{J})}{E_e E_v}) + \vec{S} (A + \frac{\vec{P}_e}{E_e} + B \frac{\vec{P}_v}{E_v} + D \frac{\vec{P}_e \times \vec{p}_v}{E_e E_v}) - \\ &- \frac{(1 - \wp^2)}{(1 + \wp^2)}. \frac{m_e m_v}{E_e E_v} a_1 [1 - \xi (\vec{P}_e^0 \vec{P}_v^0) + c_1 d_J]. [(\frac{1}{3} (\vec{P}_e^0 \vec{P}_v^0) - (\vec{P}_e^0 \vec{J})(\vec{P}_v^0 \vec{J})]. \end{split}$$

$$\vec{S} = \vec{j} \sum_{M_i} a(M_i) / (M_i / J_i) \; ; \; d_{J_i} = \frac{J_i (J_i + 1) - 3 < (\vec{J}_i \vec{J}_i) >^2}{J_i (2J_i - 1)}$$
 : عيث $\rho_i = \frac{1}{2} (\hat{P}_i + m_i) (1 + \gamma^5 \hat{S}_i)$

تابع $a(M_i)/(M_i/J_i)$ ، S متجه الواحدة وفق اتجاه S متجه النواة المتفككة ، S متجه النووية المستقطبة ، تعطى الثوابت a_1 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 الثابت a_6 بعبر عن الثابت a_6 بالعلاقة التالية :

$$D = \beta_e \beta_v \frac{4 \wp M_F M_{6T} \delta_{JJ'} \left(\frac{J}{J+1}\right)^{\frac{1}{2}}}{(1+\wp^2)[\left|M_F\right|^2 + \left|\lambda\right|^2 \left|M_{GT}\right|^2]} \sin \varphi \quad . \tag{7}$$

$$, \beta_\ell = \left(\frac{p}{E}\right)_\ell \ell = e, v :$$

$$\text{ The equation of the problem of the equation o$$

عندما $\wp=1$, وإن العلاقة (7) نؤول للعلاقة التالية: $m_{_{\!V_e}}=0$ ، عندما

$$D = \beta_e \frac{2M_F M_{6T} \delta_{JJ'} \left(\frac{J}{J+1}\right)^{\frac{1}{2}}}{\left[\left|M_F\right|^2 + \left|\lambda\right|^2 \left|M_{GT}\right|^2\right]} \sin \varphi$$

وهذه العلاقة هي نفسها العلاقة المعطاة في المرجع [3].

النتائج والمناقشة:

یون یکون الخد آ $[p_e^0 \ p_v^0]^0$ في العلاقة (6) مقداراً متغيراً مع دوران الزمن (t \rightarrow -t)، فإنه عندما يکون .I الثابتان C_A حقيقيين، فإن C_A ومنه C_A ومنه C_B ومنه C_B ومنه C_B عبارة رياضية لا متغيرة مع دوران الزمن (محفوظة) .

II. نلاحظ من العلاقة (7) أن وجود الثابت D كأحد حدود العلاقة (6) عملياً مرهون بكون الانتقال النووي .II مختلط ($\vec{n} \to p \ \overline{e} \ \vec{v}$) وهذا محقق في حالة تفكك β للنترون الحر المستقطب ($\vec{m} \to p \ \overline{e} \ \vec{v}$) إذاً تكون عبارة dw_{β} متغيرة مع دوران الزمن فقط في حالة الانتقال المختلط ، ($\phi \neq 0, D \neq 0$) أي تفكك β للنوى المستقطبة يخرق قانون حفظ الزمن β بالنسبة لتحويلات لورانتز .

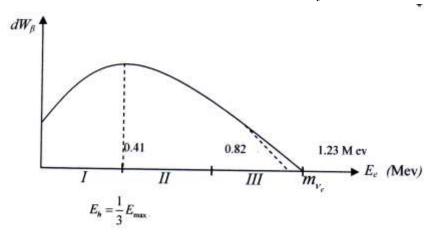
$$D = \beta_e \beta_v \frac{4\wp|\lambda|}{(1+\wp^2)(1+3\lambda^2)} \sin \varphi \tag{8}$$

- النترون.
$$M_{\rm F}=1$$
 , $M_{\rm GT}=\sqrt{3}$, $\varphi=180.073\pm0.12^{
m o}$ النترون.

: (المستقطب الترون الحر المستقطب) التالية التالية التالية للثابت β (حالة تفكك - β النترون الحر

الجدول (1) يبين قيم D التجريبية[10، 9، 8]:

D	المرجع
$[-0.6 \pm 1.2 \text{ (state)} \pm 0.5 \text{ (syst)}]10^{-3}$	[8]
1×10^{-3}	[9]
$(1.1 \pm 0.5) 10^{-4}$	[10]


الجدول (2) يبين التركيز على قيم D من تحليلات أخرى لدوران الزمن T الزمن الملاحظ من أجل النموذج المعياري وامتداداته المعيارية [8]:

Theory	D
1. Kobayashi-Maskawa phase	<10 ⁻¹²
2. Theta-QCD	<10 ⁻¹⁴
3. Supersymmetry	$\leq 10^{-7} - 10^{-6}$
4. Left-right symmetry	$\leq 10^{-5} - 10^{-4}$
5. Exotic fermion	$\leq 10^{-5} - 10^{-4}$
6. Leptoquark	≤ present limit

كما أثبتت التجرية وفق [14] أن arphi
eq 0 حقداران عقديان) إذاً الحد الذي يحوي الثابت D في العلاقة (6) لا يساوي الصفر، وبالتالي عبارة $dw_{-\beta}$ هي مقدار متغير مع دوران الزمن، أي تفكك β للنوى المستقطبة يخرق قانون حفظ الزمن T بالنسبة لتحويلات لورانتز . (m_{ν_e}) : المكونية الالكتروني السكونية . III

$$(m_{_{V_e}})$$
 حساب كتلة النترينو الالكتروني السكونية .III

، يمكننا اعتماداً على العلاقة الرياضية (8) ، تحديد قيمة كتلة النترينو الالكتروني السكونية (m_{V_e}) نظرياً وذلك بالاستفادة من أحدث القياسات التجريبية للثوابت $D, arphi, \lambda$ ، والمدرجة في هذا البحث . نميز عدة حالات : النووي β النووي

$$D = (1.1 \pm 0.5) \times 10^{-4},$$

$$\varphi = 180.073 \pm 0.12^{\circ},$$

$$\lambda = -1.2740 \pm 0.0021$$

I-في نهاية الطيف:

$$\Delta E = Ee + Ev + m_{v_e}$$

$$\begin{cases} Ev = 2m_{v_e} \\ Ee = 1.23 - m_{v_e} \end{cases}$$

: (−) a قلم الحالة •

$$a - \begin{cases} D = 0.6 \times 10^{-4} \\ \varphi = 179.953^{\circ} \\ \lambda = 1.2719 \end{cases} \Rightarrow m_{\nu_{e}} = 1.02 \text{ e.V}$$

• في الحالة b (+) :

$$b - \begin{cases} D = 1.6 \times 10^{-4} \\ \varphi = 180.193^{\circ} \\ \lambda = 1.2761 \end{cases} \implies m_{\nu_{e}} = 1.03 \text{ e.V}$$

II- في الثلث الثاني من الطيف:

$$E_e = 0.8 MeV$$

$$E_v = (0.43 - m_{v_e}) MeV$$

(-) a قي الحالة •

$$a - \begin{cases} D = 0.6 \times 10^{-4} \\ \varphi = 179.953^{\circ} \\ \lambda = 1.2719 \end{cases} \Rightarrow m_{\nu_{e}} = 8.6 \text{ e.V}$$

• في الحالة b (+):

$$b - \begin{cases} D = 1.6 \times 10^{-4}, \\ \varphi = 180.193^{\circ}, \\ \lambda = 1.2761, \end{cases} \Rightarrow m_{\nu_e} = 13.67 \text{ e.V}$$

الاستنتاجات والتوصيات:

نلاحظ مما سبق أن قيمة كتلة النترينو الالكتروني السكونية m_{v_e} المحسوبة في نهاية الطيف فقط تتفق مع القيمة التجريبية المقاسة [11] ، بل وتؤكد ضرورة تصحيح نتائج [11] بحيث تصبح:

$$0 < m_{v_e} < 2.7 \ e.V$$

تتفق هذه النتيجة مع نتائج البحث [15] ، أي لا يمكن لكتلة النترينو أن تكون معدومة.

إذاً دراسة لا تغير $dW_{\beta-}$ – (عبارة احتمال تفكك – β النووي) بالنسبة لمؤثر دوران الزمن \hat{T} ، تقود إلى تعيين قيمة محددة لكتلة النترينو الالكتروني السكونية m_{ν_e} ، وهذا ما يتفق مع نتائج البحث [15] ، التي تؤكد ضرورة كتابة 0 في المراجع العلمية ، وبالتالي نقترح تطوير نظرية (عبد السلام– واينبرغ)، بحيث يضاف إلى تابع لاغرانج للتأثيرات المتبادلة ، الحد الذي يحوي كتلة النترينو الالكتروني السكونية .

الملحق:

$$\begin{split} \eta &= (1+\wp^2)(|M_F|^2 + |\lambda|^2|M_{GT}|^2). \\ a\eta &= (1+\wp^2)(|M_F|^2 - \frac{1}{3}|M_{GT}|^2). \\ A\eta &= \mp 2\wp a_J + (1+\wp^2)B_J. \\ B\eta &= \mp 2\wp a_J + (1+\wp^2)B_J. \\ C\eta &= -|\lambda|^2 - \Lambda_{JJ'}(1+\wp^2)|M_{GT}|^2. \\ D\eta &= 2\wp \beta_e \beta_v M_F M_{GT} \delta_{JJ'}(\frac{J}{J+1})^{\frac{1}{2}} \sin \varphi. \\ a_1\eta &= (1+\wp^2)(|M_F|^2 - |\lambda|^2|M_{GT}|^2). \\ a_1\eta \xi &= (1+\wp^2)(|M_F|^2 + \frac{1}{3}|M_{GT}|^2); a_1\eta c_1 &= c\eta. \\ a_J &= |\lambda|^2 \lambda_{JJ'}, |M_{GT}|^2; B_J &= \delta_{JJ'}(\frac{J}{J+1})^{\frac{1}{2}} M_F M_{GT} \cos \varphi. \\ \lambda_{JJ'} &= \begin{cases} 1 & ; J' = J - 1 \\ \frac{1}{J+1} & ; J' = J \end{cases} \\ -\frac{J}{J+1} & ; J' = J + 1 \end{cases} . \Lambda_{JJ'} &= \begin{cases} 1 & ; J' = J - 1 \\ -\frac{2J-1}{J+1} & ; J' = J \\ \frac{J(2J-1)}{(J+1)(2J+3)} & ; J' = J + 1 \end{cases} \end{split}$$

* عندما $\wp=0$, $\wp=1$ تؤول جميع هذه العبارات الرياضية إلى العبارات المستخرجة في المرجع [3].

المراجع:

- 1-SMIRNOV, A.V. ;et al-Neutrino And Nutrino Astro Physics-Prees Moscow Univ.-1948, 11-12.
- 2-LEE, T.D.; -Weak Interaction-Colombia Univ. New York-1968, 74-96.
- **3-**COMMINS,E.D;et al-Weak Interactions of Leptons and Quarks-Combredge Univ. Prees-1983,163-164.
- 4-TA-PEI CHENG;LING-FONG LI-Gauge Theory Of Elementary ParticlePhysics-Univ Of Missouri-St.Louis-1984,387-453.
- **5** LEVEH-V.K. *Theoretical physics* vol.1-Moscow-1971.
- 6-LANDAU,I.D.; et al-Relativistic Quantum Theory-JXTF-P.1-1968,114-118.
- 7-LEE, T.D.; YANG, G.N-Breaking of the P-Invariant-Phys. Rev.-V. 104, 1956, 254.
- 8-HWANG,S.R.; LISING,L.J.-New Limit on the D Coefficient in Polaraized Neutron Decay-Phys.Rev.c.V.62.055501,2000,1-2.
- 9-STEIGER,T.D ;et al, Time Reversal In Neutron Beta Decay-The emit Experiment-2002-<www.neutrino D beta decay coefficient correlation.com><CENPA-Electroweak Interaction_files/S 3400075.htm>.
- 10-PETER,HERCZEG,The T-odd R and D correlation in beta decay-2005-<file://A:/The T-odd R and D correlations in beta decay.htm>.
- 11-BONN,J.;et al-Nucearl.Phys—proc.suppl.-V.91,2002,273.
- 12-GLŸCK,F. ;BAE BLER,S. ;et al, *The neutron decay retardation spectrometer a SPECT:Electromagnetic design and systematic effects*-Eur.Phys.J.-A.23,2005,135-146.
- 13-ACHIZAR, A.E.; et al.-Quantum Electrodynamics.-press sience -1981, 18-19.
- 14-ADAMS,J.M. ;BOWLES,T.J-New limit on the D coefficient in polarized neutron decay-Phys.Rev.c.-V.62.055501 –The emit Collaboration,2000,10.
- 15 د. معلا ،تيسير حساب كتلة النترينو الالكتروني من قياس معاملات الارتباط في تفكك بيتا النووي للنترون
- الحر المستقطب مجلة بحوث جامعة حلب سلسلة العلوم الأساسية العدد 49 ، 2006 ، صفحة -137 . 146 .