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O ABSTRACT 0O

The integration between the special relativity theory and quantum mechanics through
the Dirac equation yielded many paradoxes that remained unsolved until the last years, like
the Zitterbewegung problem. Besides, the spin prediction from the Dirac equation could be
identified only with non-relativistic approximations (Pauli and Foldy-Wouthysen).

In this paper, we showed that the derivation of the spin and its magnetic moment can
be done through a classical treatment without approximation. By this approach a modified
Dirac equation was obtained, which also eliminates the problem of the Zitterbewegung.
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Introduction:

The integration of the special relativity theory with quantum mechanics has yielded
many paradoxes that remained unsolved until recent years. A short time after the
publication of the Dirac equation, a serious problem was discovered by Schrodinger [1],
this problem was known as Zitterbewegung. Similarly, it was impossible to write directly a
non-relativistic equation for spin-1/2 particles, and that it could only be derived as a non-
relativistic limit of the relativistic Dirac equation. Therefore, the Pauli equation for the
theory of spin was derived as a non-relativistic limit of the relativistic Dirac equation, even
though, that was known in standard quantum mechanics as a direct proof of the
fundamentally relativistic nature of the spin [2]. However, in 1984 this supposition was
questioned by W. Greiner [3] when he derived the spin from the non-relativistic quantum
mechanics, i.e. he derived the spin from the Schrédinger equation. A prominent attempt to
eliminate the problem of Zitterbewegung was by E. G. Bakhoum [4], who requires a
modification in the mass-energy equivalence principle. Bakhoum introduced a new total
relativistic energy formula E = mv”® instead of Einstein’s E = mc”, where m is the
relativistic mass of the particle, and v is the particle velocity.

This paper carries Bakhoum’s work a step further as we have derived Einstein’s

equation E = mc? without using the special relativity theory. Instead, we started from the
classical physics laws like the Lorentz force law and Newton’s second law [5,6,7,8,9]. The

energy formula of a particle E = mv > allows reconciliation between the de Broglie wave
theory and the framework of the relativistic physics without the usual contradictions. In

this paper, by starting from the new total relativistic energy formula E = mv *, we derived
a modified Dirac equation and we obtained the same result of Bakhoum concerning the
Zitterbewegung. Furthermore, we revealed that the spin of the electron and its magnetic
moment can be derived without using approximations.

Aim and Importance:

The importance of this paper is that it aims to solve an important problem concerning
the essential characteristic of the electron, which is the electron spin. The electron spin
plays a fundamental role in many physical effects in several branches of physics, such as
solid state physics and atomic physics and the physics of compact stars. Moreover, many
modern technological applications in the fields of electronics, nanotechnology and
guantum computation depend on spin.

Methodology:

We use in our calculations and derivation of equations mathematical methods and
symbols that are familiar internationally in standard textbooks in this specialization of
physics.

This research had been done at Department of Physics in the Faculty of Sciences at
both the University of Aleppo and Tishreen University, through the years 2006-2007.

The Relativistic Dirac Equation:

The early twentieth century saw two major revolutions in the way physicists
understand the world. The first one was quantum mechanics, and the other was the theory
of relativity. Important results also emerged when these two ideas were brought together,
and one of these results is the spin of the electron that was known as relativistic effect.
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When calculating Kinetic energy relativistically using Lorentz transformation instead of
Newtonian mechanics, Einstein discovered that the amount of energy is directly
proportional to the mass of a particle
E = mc’. (1)
The energy and momentum of a particle are then related by the principal equation
governing the dynamics of a free particle
E*=c’p*+ mgc”. 2)
Following Dirac, by taking into account time dependence like in Schrddinger
equation
A | I
ih .t v=Hy. 3)
As in the non-relativistic case and assuming that the energy operator H can be
expressed in terms of the momentum operator p in the same way as E is related to p in

the classical limit.
Hence, using Eq. (2) and (3) we obtain

ih%y/: ,\/Czﬁz +micty.
One of the conditions imposed by Dirac in writing down a relativistic equation for
the electron was that the “‘square’’ of that equation will give the Klein — Gordon equation.

Imposing the additional condition of linearity of I—iD in the components p, of the
momentum, [10,11] led Dirac to Egs. (4) and (5)

ih.?—tw:ﬁow, @)
where
Hp = claxp)+ mgc?s, (5)
[0 o k=123 p=| ° 6
ak_ak NE —,,,,B—O_I , (6)

where o, are the two by two Pauli matrices, and | is the two by two identity matrixes.

The Pauli Equation as a Non-relativistic Limit of the Dirac Equation:

In standard quantum mechanics, it is believed that it is not possible to directly extend
the Schrddinger equation to describe spinors. So, the Pauli equation must be derived from
the Dirac equation by taking its non-relativistic limit. This is in particular the case for the
Pauli equation which predicts the existence of an intrinsic magnetic moment for the
electron and gives its correct value only when it is obtained as the non-relativistic limit of
the Dirac equation.

The Dirac equation for a relativistic electron moving in a constant magnetic field
could be written as following

ih Ly = foax(p- S A)+ pmcly. (7)
T c

We can now derive the Pauli equation following the standard method of eliminating
small components in the Dirac spinors. We consider a two-component representation,
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where the four-component spinor i is decomposed into two two-component spinors y,
and

Yor 2 4 _ Vs
V=g "5 v, =§ % v. = § 3 (®)
Vs 2 Wy

In the non-relativistic limit, the rest energy m,c* becomes dominant. Therefore, the
two component solution is approximately

- imyc’t
Vos =€ " Wy, )
Substituting this non-relativistic solution into the Dirac equation, equation (7), in the
Dirac representation gives

|h%Iwb—cU4wu--—Aw@ . (10a)

ih%wf =co N1 ho - EA)‘//bO' 2m ey . (10b)

When the kinetic energy is small compared to the rest energy, then . will slowly
vary as a function of time, so

ihgl//f 0 ‘moczwo (12)
With this approximation, equation (10b) becomes
0=coxiho - EA)l//l?— 2mc !
This gives ’
oxih, - £ 4)
v, = 2mocc vy (12)

The lower component . is generally referred to as the 'small' component of the
wave function y , relative to the 'large’ component v .
Substituting the expression ., given by equation (12), into equation (10a), we
obtain
hJ
ﬂ_tl//b
Finally, by using the well-known identity
ca)(cb)=ab+ica  b).
We obtain, B =, " A, being the magnetic field

ﬂ € Ay eh 0
N = (s - SA)- S oBl (13)

This is the well known Pauli equation. So, the Pauli equation in the theory of spin
was derived as a non-relativistic limit of the relativistic Dirac equation, and it was
considered in standard quantum mechanics as a direct proof of the fundamentally
relativistic nature of the spin.
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Derivation of Modified Dirac Equation and Its Solutions:

In several recent papers we suggested another way to account for the Lorentz
Transformation and its kinematical effects in relativistic electrodynamics as well as in
relativistic mechanics. And by following the same approach we derived Einstein’s equation
E = mc? from classical physical law such as the Lorentz force law.

As demonstrated in the papers [6,7] the relativistic transformation relations and
relativistic formulae are produced without the Lorentz Transformation and its kinematical
effects. We obtained the known relativistic mass and energy formulae

m = m°2 , and E =mc?. (14)
Vv
CZ
It is simple to prove that Eqgs.(14) leads to the following equation
m%c*=m’cv?+m,c’. (15)

If we multiply Eq.(15) by v ?/c? and rearrange, we get
m¥v* =c’p’—mcv?.
Now if we let H =mv ? in the last equation, then we have
H?=c*®p’-m,c¥?. (16)
Multiplying and at the same time dividing the last term in Eq.(16) bym?, we obtain

2 2
H 2 =c?p? [1-%} =c%p® {1—(1—%)] (17)

So, we finally get

H?=v’p>. (18)
Following the method of Dirac we can write the new Hamiltonian as
H=vagp,, (19)

where the matrices «; must satisfy the following condition
ij? (20)

which is satisfied also by the Dirac matrices; so the matrices «; are considered the
Dirac matrices themselves.

Replacing H with the operator ih% and p with the operator —i %AV in Eq.(15),
then the modified Dirac equation for a free electron can be written as following

%y/+vajvjl//:0. (21)
We will continue to find the Eigen functions of the new Hamiltonian for free electron

to show that there is no contradiction between our results and Dirac’s basic conceptions.
Solutions to Eq.(21) are plane waves which can be written in the following form

W) =N (qo(x,t)]:N (co(X)]e_iE"t. 22)
x(X,t) x(X)

aa; +a;a; =20

»(x)

j is a four component spinor.
x(X)

where N is the normalization constant, and [
Substituting Eq.(22) in Eq.(21), and considering that
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(o0, (%)
x(X) Xo ’

u u . .
where ¢ :[ 1} and y, :( 3) are two-component spinors, we find
u, u,

[ )
Xo : oj 0 Xo

From Eq.(23) we obtain these two equations

Ev¢o_vijjZ0=0 . (24)

E. % —Vvp;o;0,=0
These two equations have solution if

E, —Vp;o;
—Vp,o; E, -
or equivalently
E,>=v’p*. (25)
From Egs.(24) and normalization condition we find
Vp. o, Vp.o
Yo=—=—"@, and @, = Ej ~ %o (26)
From these two equations we obtain
vp o)
0 :# 0- (27)

Using Eq.(25) in Eq.(27), we find that y, can take these two representations

o) ()

From the above calculations we find
gD(X! t) ¢0 i
—(px-Et)

Y(x,t)= N |vp. o =N |vp, o, e” : (28)
—2o(x) 20,

\ \
By calculating the normalization constant N for positive and negative energy
solutions, we find

E|

JE S +p)
So, the two solutions of the modified Dirac equation that corresponds to the positive
energy E = +,\/v2p2 with two different stats of the electron spin orientation are

N = (29)
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Similarly, the two solutions of the modified Dirac equation that corresponds to the
negative energy E :—«fvzpz with two different stats of the electron spin orientation are

v o2 °
e
_ | VPLE P ) ety , (31a)

Er+(vp g E %

rod

0 =

V(- ip,):
E =
- 2|E| : - VP, %i(p*-Et)/h_ (31b)

E“+ (vp) E -
U
1 =

Although we started from classical electrodynamics, the analysis in our paper is still
entirely relativistic by the formula E, =mv ? instead of E =mc?. We will also show now
that the modified Hamiltonian, Eq.(19), leads to the same result of Bakhoum concerning

the Zitterbewegung. Furthermore, we reveal that the spin of the electron and its magnetic
moment could be derived without using approximation.

Calculating the Velocity from the Modified Dirac Hamiltonian:

In the Dirac theory for spin 1/2 particle, the velocity operator is V. =ca. The
problem of the Zitterbewegung in Dirac’s Hamiltonian corresponds to the first term in the
Hamiltonian i.e. the term ca-p. Actually, the particle velocity component on the ox axis
when calculated from the Poisson bracket using the Dirac Hamiltonian gives the following
result [4]

Xz[x,H]zgi:cal. (32)

X
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From this equation, it is clear that X will be always +c , with ¢ being the speed of

light in vacuum. So, the operator V' = c& is inadequate in two aspects. The first one is that
its eigenvalues are+ ¢ and- c, a result which is in obvious contradiction with the physical
reality, the other one is that it is not proportional to the linear momentum. To overcome
these shortcomings, E.G. Bakhoum obtained a Hamiltonian that is written as following [4].

H=tv) PA ,
r
Where g, are matrices that satisfy these two conditions

,Brz =1, and ﬁjﬂk +ﬂkﬂj =0.
Unlike the Dirac result for the eigenvalue of the particle velocity, Bakhoum’s result
IS in agreement with the experimental observation, since
, oH
X =[x,H] P V.
From this equation, it is clear that X will be +v or —v .

Another attempt that dealt with the problem of the Zitterbewegung was by Recami et
al. [12,13,14]. They alleged that the Zitterbewegung is necessary for the quantum
phenomenon of spin, and gave it a physical (classical) meaning. In this paper it is shown
that by the modified Dirac Hamiltonian the velocity operator really retrieves the classical
relation between velocity and momentum. So, we will see how we get the eigenvalue of
the particle velocity from Eq.(25), with the problem of the Zitterbewegung canceled.

Multiplying Eq.(21) from the left with ", we obtain

1//*%1//+Vw+o?j Viy=0. (33)
Taking the hermitean conjugate of Eq.(21), we get

§w++v V,y"a; =0. (34)
Multiplying the last equation from the right with  , we have

6‘%1//*1//+V Viy a;w=0. (35)
Summing the tow equations (33) and (35), we get

S w)+V,(y v a; w)=0. (36)
Comparing this equation with the familiar continuity equation
S p+V-3=0, (37)
we identify that
J=vy ay. (38)

According to the known formula J= pVv, we deduce that the expected value of the
particle velocity obtained here from the modified Dirac equation equals +v .

The Dirac Hamiltonian Zitterbewegung referred to in some literatures as a result from
interference between two positive and two negative energy components of the Dirac
spinors. The modified Dirac Hamiltonian Zitterbewegung might be considered also
resulting from interference between two positive and two negative energy components. It
was shown that the expected value of the particle velocity obtained here from the modified
Dirac equation always equal the velocity that the particle moves with, as observed in the
laboratory the force-free electron can move at any velocity less than c. The difference
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between the interpretation of the “Zitterbewegung” from our modified Dirac Hamiltonian
and from the Dirac Hamiltonian is now to be expected.

Derivation of Pauli Equation without Approximation Methods:

The most important result of the Dirac equation was presenting a theoretical
description of the spin of the electron and its magnetic moment, that did not appear directly
from the Dirac equation but using approximations (Pauli, Foldy-Wouthysen). This is not
the case when we derive the spin of the electron and its magnetic moment from the new
Hamiltonian, Eq.(19).

As we know, the momentum is replaced in the following way to include the effects of
the magnetic field in the Dirac equation

p—op-=A. (39)
We apply the same idea to the new Hamiltonian in Eqg.(24) which can be written as
e
H :V[u-(p—EA)]. (40)

By following the method of Bakhoum in his paper [4], i.e. by squaring Eq.(40), then
we have a scalar equation and dividing it on mv > we get

1 e
H :E[“'(p_EA)]Z' (41)
In the reference [15] the following equation holds
e e en
[o-(p-—A)) =(p--A)’'-— 0, B, (42)
c c c

where the matrices o, in Eq.(42) are the 4x4 Pauli matrices that have the following

representation
o, 0
0o, =
Y10 o

Substituting Eq.(42) in Eq.(41), we finally obtain
e

1 * en
H :_(p__Aj G, B (43)
m c mc

The second term on the r.h.s. of Eq.(43) represents the interaction of the electron spin
magnetic moment with the magnetic field. An important characteristic of Eq.(43) is that we
did not use any kind of approximation to reach it. Therefore, we got the relativistic mass
m not the rest mass m,, also the Pauli matrices here ¢, are 4x4 matrices. That is why
Eq.(43) could be regarded as a relativistic Pauli equation.

The usual Pauli equation can be obtained from Eq.(43) by canceling terms

containing ¥_, since for m 0 m, we have H =m ?, so we get
c

1, 1 e ) en

—myVv° = -——A| - o, -B. 44

R N @
Equation (44) is the usual Pauli equation, and without the presence of the magnetic

field the Equation (44) is reduced to
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Lol
2m, 2

That means the electron has a spin magnetic moment p=— o, and the magnetic
0
moment interacts with an external magnetic field. So the corresponding contribution to the

energy is—u-B. We recognize here the classical Pauli equation for the theory of spin with
the correct gyromagnetic factor g = 2 for free electron.

Conclusion:

There exists an inconsistency between Einstein’s special relativity and the De
Broglie wave mechanics, and it has never been resolved from the viewpoint of relativistic
physics for a long time [8,9]. A more suitable method to deal with this contradiction is to
develop the applicability of the classical physics laws to all particle velocities i.e. to
expand the appropriateness of these laws to deal with the relativistic domain. Following
this approach, a modified Dirac equation can be derived using classical description as it is
shown in this paper.

Bakhoum showed how the modern physics as we know can be understood on the

basis of the equation H = mv>. In particular, Einstein’s equation H = mc*becomes a
special case of the broader equation H = mv?*. The Hamdan et al. work carries

Bakhoum’s work a step further, since recently we derived the formula H = mv > without
using the special relativity theory, but starting from the Lorentz force law and the relativity
principle. In this paper, we derived modified Dirac equation, and we obtained the same
result of Bakhoum concerning the Zitterbewegung. Further, we got an additional
advantage, where the modified Dirac equation, Eq.(21), directly leads to relativistic Pauli
equation without using approximation methods. Unlike the Dirac equation and its
predications, our modified Dirac equation and its results remove the conceptual difficulties
with the problems of the Zitterbewegung and approximation methods. Up till now, the
thing was not expected to happen. So our results are new and no such results exist in the
scientific literature concerning the subject of this paper.
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