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O ABSTRACT 0O

In this paper, efficient direct and iterative methods are described for solving a large
random sparse non-symmetric linear system. Such systems of linear equations of huge
order arise in several applications such as physics, mechanics, signal processing and other
applications of real life problems. For this reason, we try to develop direct and iterative
methods for solving such systems of linear equations. The suggested direct method is
based on the sparse LU-decomposition method (DSLU). The developed iterative methods
include a Semi-iterative Method (SM), a Splitting-based Iterative Method (SIM) and a
preconditioned GMRES method. We consider two types of preconditioners based on
Incomplete LU-decomposition (ILU). We test and compare the numerical implementations
of these methods on four numerical examples to demonstrate their efficiency. Results show
that the proposed ILU preconditioners in GMRES reduce largely number of iterations and
give very accurate solutions.
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Our goal is to solve a system of linear equations
Ax=D 1)

where A is a large, random sparse and non-symmetric matrix of order nxn and b is
a given column vector of order n. Such systems are frequently encountered in almost all
scientific and engineering applications [1,2] such as physics, mechanics, signal processing
and other applications of real life problems. For this reason, we try to develop direct and
iterative methods for solving such systems of linear equations. Methods of solution may be
classified as direct, involving a fixed number of arithmetic operations, and iterative,
involving the repetition of certain steps until the desired accuracy is achieved. The
performance of direct methods for sparse systems is largely due to that of the factorization
of the matrix. The disadvantage with iterative methods is that the rate of convergence may
be slow or they may even diverge and we need to find preconditioning matrix to speed up
the convergence rates [3]. This suggests that direct methods should be preferred. The first
approach to solve (1) is by the direct sparse LU-decomposition method (DSLU). In this
approach, an upper triangular matrix U and a lower triangular matrix L are constructed
such as A=LU [4]. The system (1) can then be solved in two steps using the factors L
and U, respectively. The second approach to solve (1) is by iterative methods, which
include a Semi-iterative Method (SM), a Splitting-based Iterative Method (SIM) and
preconditioned GMRES method [5]. Certain preconditioners are able to improve on this
situation. A good preconditioner is necessary for the convergence of iterative methods for a
large random non-symmetric coefficient matrix A. We will present two types of
preconditioning in the solution of (1). The ILU preconditioners are based on an ILU-
decomposition [6,7,8] which are among the most successful preconditioners. They are of
interest because of the spectral condition number of the preconditioned system can be of a
lower order.

In this paper, direct sparse LU-decomposition method (DSLU), SM, SIM and
preconditioned GMRES method which are applicable to the solution of (1) are described.
They are tested and compared on four numerical examples to demonstrate their efficiency.
Two types of the preconditioners based on ILU are outlined.

2. Importance and Parts of the Research:

Systems of linear equations given in (1) are frequently encountered in almost all
scientific and engineering applications such as physics, mechanics, signal processing and
other applications of real life problems. For this reason we attempt to develop direct and
iterative methods for solving such systems of linear equations.

2.1. Storage Scheme:

The data structure described here [9,10] involves the use of three arrays. VA[l...na]
contains all the non-zero entries of A stored row by row. JA[1..na] contains all the
column numbers of these entries and IA[1..n+1] is an array of pointers: 1Afi] gives the
address in VA of the first non-zero entry in row number i of A when i<n.
IA[n+1]—1points to the last non-zero entry inrow n of A. For example, the matrix A:

a, 0 a, 0 O

aZl a‘22 a‘23 0 0 (2)
A=0 0 a, 0 O

a, 0 0 a, a;

0 a, 0 0 ag
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can be presented by the VA, JA and IA arrays as

rowl row2 rows rowd rows
p— .

VA = 'll“ thy dyy day dyy (5%
Ji= 1 3 1 2 3 3 1 4 's 2 5 (3)
M= 1 3 6 7 10 12

A — pr— e

(1_“ dqy Gys (l;: tss

The matrix (2) can not be factored by using the above storage scheme, “in place”
unless fill-ins are accounted for when storage is created. For example, when (2) is factored,

non-zero numbers are assigned to a,,and a.,, but neither of these elements appears in (3)
as illustrated, i.e., there is a need for reallocating storage to make room for the fill-ins.

2.2. Proposed Solution Algorithms

The solution of (1) is typically found by two different types of methods-direct
methods and iterative methods. In this section, we present direct sparse LU-decomposition
method (DSLU) and three different iterative methods including (i) SM (ii) SIM and (iii)
GMRES method with preconditioning matrices derived by incomplete LU-factorization of
A in the form proposed in [11].

The determination of fill-ins of a sparse matrix is a central problem in the solution of
sparse linear systems of equations using direct methods such as direct sparse LU-
decomposition method (DSLU). In this subsection, we describe an efficient algorithm for
determining the sparsity P of the LU factors, which have no restriction at all with respect
to the sparsity pattern of A. This algorithm is based on the powers of a Boolean matrix
obtained from A. The sparsity pattern is described either a priori or implicitly by some
approach. However, it is desirable to know in advance the pattern of non-zeros of the LU
factors because of updating the data structure to facilitate the non-zeros and fill-ins as well.
Moreover, the method, as we see, provides the information needed for computing the non-
zero structure of the LU factors. After determining the sparsity pattern of the LU factors,
computing L and U is straightforward.

The problem is to find the set P of edges for which the factors L and U are sparse
but also such as matrix LU resembles A as much as possible. In case the sparsity pattern
of A is irregular, there are several possibilities to construct a good choice for the set P .
Gustafsson [12] proposed the following:

First consider the standard incomplete LU- decomposition, i.e. P:{(i,j):aij;&O}.

Then extend P with positions (i,j) where the product LU has non-zero elements and

eventually continue in this manner a few steps more. This technique is tested extensively
by Langtangen [6]. It is costly and hence is not recommended.

Another approach determines the elements in P during the elimination process. P is
described implicitly by allowing only entries which are in absolute value greater than a
certain threshold value [7]. This approach is very sensitive if matrix A is ill-conditioned
and thereby it does not suit such cases.

For these reasons, we describe the following best approach to construct P which
avoids the above mentioned drawbacks. This approach that we take uses a Boolean matrix
multiplication.
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For these reasons, we use in this paper best approach [11] to construct P which
avoids the above mentioned drawbacks. The approach that we take uses multiplication of
Boolean matrix, which differs from regular multiplication [11].

Consider the digraph G, :(V,E) of a given matrix A. If B is the Boolean matrix
representing the digraphG,, the modified digraph Ggm = (V, Em) is defined as
Em = EU{(v;,vi)}; that is a new edge (v;,vy ) is added to G, to form G_,,, where m is
some positive integer. Initially, the sparsity structures of the matrices A and B are the

same, that is, A and B are exactly having the non-zero elements at the same positions.
But the problem is to obtain the modified Ggm at the level m. However, while finding

powers of B some zero elements in B become 1 in B™. Every initially zero element in B
becomes 1 in B™ gives a new edge, say, (v;,v, ) which is added to G, to form Ggm -
These elements are precisely the positions of fill-ins in A. Now we try to find the sparsity
pattern of L and U in terms of set theory.
In order to determine the non-zero structure of L andU , we define the set
P={{i, j): position (i, j)is non—zero including fill —in, 1<i,j<n}

Then, clearly P ={(i, j):bi(Jm) =1} whereB™ = [bi(jm)], 1<m<n-1,and m does not
exceed the longest path of G,. Note that the both two sets P and E, have the same

elements. Thus, the set P, gives the sparsity pattern of ILU(m) and L and U are lower and

upper triangular matrices respectively at level m. The method for finding the set P is
summarized in the following algorithm.
Let B= [bijJ is given by

1 if aij =0
byj = : (4)
0, otherwise
Algorithm 1
Step 1.
Form the matrix B as defined in (4)
Step 2.

Compute B2" ,(m>1).
if B2" =B2""  then

Form the set P ={ (i, j):bigzm) =1}.
Else
m=m-+1, and go to Step 2.
From the Algorithm 1, it follows that the sparsity pattern of LU is approximately

equal to that of B2 . At any given iteration, if the calculated Boolean matrix agrees with

2m

+1
the matrix at the previous iteration, i.e. B2" —B , then the process has converged and

we have the sparsity pattern of the LU factors. If B? = BZ" we get the complete LU
factors. In this case, we get the direct sparse LU decomposition method (DSLU).
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Definition 1:
Suppose that B' = [bi’jj and B" = [b{jj are square Boolean matrices of order n and

"and" be a Boolean operator defined on the entries of B"and B". The Boolean product of
B’and B", denoted B'B”, is the nxn Boolean matrix C = [cijJ defined by

{1 (True) i bj =1 and b =1for some k, 1<k <n
i =

"o (False)  otherwise.

(5)

From the definition, it follows that c;; =1 iff by =1 and b, =1. Since we need to

pose a more specific query, we use the Boolean operator "and", which limits results to
those items that certain both (or all) of the search terms in our query. Thus, we can easily
perform the comparisons and checks for each position of the Boolean product.

To find the sparsity pattern of L and U at level m, compute the powers

m

BZ,B** B, B’
Note 2.
To find the sparsity pattern of L and U such that A= LU, it is sufficient to find the

+1
smallest m such thatB? =B?2" , Where m is the first time the matrix power g2"

m-+1
becomesB? .

(1). Incomplete LU-Decomposition Method (ILU Method):

Once the non-zero structure of L and U matrices is obtained, i.e., when the set P is
determined, the construction of ILU decomposition based on Doolittle's method, is made
where all the diagonal entries of L are 1.

A=LU gives

min(i, j)
aij = Dl (6)
k=1
This gives the following explicit formulas for I;; and u;;:

k-1
8y~ D i1
j=1 . .
ly=—""— i>k , u, =g - lju, i<k (7
Uy =1

While making an incomplete LU-decomposition, we need to store only non-zero
entries of L and U . We define extra help array Diag [1...n] which points to the diagonal
elements of U in the array VA. The non-zero structure P of L and U is stored in
JA, IA and VA containing a;; =0 as well as fill-ins. The following algorithm calculates

the incomplete decomposition. The Boolean variable revise is false for the standard
incomplete decomposition and true for the modified version such that row sums of the rest
matrix R = A— LU equal zero. The array Point [1...n] is an array of integers which points
tothe entriesin L and U of row i.

Algorithm 2 The incomplete LU-decomposition:
Fori=1TonDo

Point[i]=0;
Fori=2TonDo
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{
Forv=IA[i]+1TolA[i+1]-1 Do
Point[JA[Vv]]=vV;
Forv=IA[i] ToDiag[i]-1Do

J=JALV];
VA[v] =VA[V]/VAI[Diag[j]];
Forw=Diag[j]+1 TolA[j+1]-1 Do

k=Point[JA[W]];
If (k>0) then
VA[k]=VA[k]-VA[V]*VA[W];
Else
If (revised ) then
VA[Diag[i]]=VA[Diag[i]]-VA[V]*VA[wW];
H/End For w.
H/End For v.
Forv=IA[i]+1TolA[i+1]-1 Do
Point[JA[v]]=0;
H/End For i.

(11). Iterative Methods:

In this subsection, we describe different iterative-like methods for solving (1). These
methods include the following:

(1) Semi-Iterative Method (SM):

The semi-iterative methods are in principle direct methods. The significant feature of
the methods, however, is that a good approximation to the solution can be obtained after a
much smaller number of iterations. The goal of reducing the solution time is achieved only
if the matrix is decomposed in an efficient manner. The major drawback of direct sparse
LU-decomposition method (DSLU) is that L and U are not sparse due to fill-ins, so
computer storage demands are very high. Moreover, the computational work for
constructing the factors L and U increases considerably with the dimensions of the
problem. We outline an algorithm for increasing the accuracy of the solution vector. A
Semi-iterative Method (SM) can do it. The solution procedure consists of two steps:
1.In the first step: the matrix is decomposed in an approximate manner.
2.In the second step: a semi-iterative method is used to rapidly improve the accuracy of the

solution.

The basic idea behind semi-iterative method is to firstly reduce the computer storage
demands required to L and U by determining the fill-ins to the level of 2 and secondly to
increase the accuracy of the solution vector of (1). The semi-iterative method is given in
the following algorithm:

Algorithm 3 Semi-iterative Method:
1. Call Algorithm 1 to construct P for m=2.

2. Compute M = L'U” = LU(2) by using Algorithm 2.
3. Solve L'U "x; =b by using forward and back substitution algorithms respectively.
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4. For i =1,2,...,until the desired accuracy is achieved
I. Compute r; =b— Ax;.

ii. Solve L'U *yi =r; by using forward and back substitution algorithms
iii. Compute X;4 = X; + ;.

The differences between DSLU and SM algorithms:
From the Algorithm 3, it is clear that the differences between DSLU and SM is that
in the former method it is required to:

1. Determine the fill-ins until B2 = Bzmﬂwhile in SM it is enough to determine the fill-
ins to the level of 2.
2. The computer storage demands required in DSLU is more larger than that of SM.
3. The accuracy achieved by SM is more than that achieved by DSLU.
Note that SM begins with the factorization of the original matrix. Once the LU
factors have been computed the Algorithm 3 should be used to achieve the desired
accuracy.

(2) Splitting-Based Iterative Method (SIM):

In this subsection, we outline an iterative refinement method for solving large non-
symmetric sparse systems of linear equations as proposed in [15]. But this method is based
only on the LU-decomposition outlined in Algorithms 1 and 2. We prove that for a given
non-singular matrix A having a LU-decomposition, there exists a triangular splitting of A
such as the spectral radius of the iterative matrix associated with splitting can be made
arbitrarily small. This method is used this as refinement process in the LU-decomposition.
The efficiency of the proposed iterative refinement will be shown in the numerical
experiments section.

Suppose A the coefficient matrix of (1) has splitting
A=M —N (8)
where M is nonsingular matrix. Hence we can construct a splitting-based iterative
method as follows:
Xysa =M INx, +M b 9)
The sequence {xu} generated by (9) will converge to the solution x = Al of the

linear system (1) if the spectral radius of the iterative matrix M *N is less than one

i.e. p\M INJ<1.1n general we can not guarantee that the method (9) is convergent for any
choice of M and N in (8). For the sake of the efficiency of the method (9), we have to
consider whether:
(i) Mx=c can be easily solved.
(if) The splitting based iterative method satisfies the convergence condition p(l\/l ‘1N)< 1.
We choose a special splitting (8) satisfying condition (i), then study the spectral
properties of M IN.
Definition 2:
Splitting (8) is called triangular if M is a triangular matrix.

In general, the inverse of the matrix M may not be easily obtainable. We will show
that in general M can be chosen as a triangular matrix by using the following results.
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Let A=LU be the decomposition of A using Algorithms 1 and 2 where L and
U are lower triangular and upper triangular matrices, respectively. Then [15]:
Lemma 1:

For given U the upper triangular non-singular matrix and given distinct numbers
A;#0,1=12,..,n, there exist invertible matrices T and diagonal D such that:

DU =T (1 -AJT (10)

where A =diag (4,4 ,,...4 ).

Proof. For a given U , we can always find a diagonal matrix D such as all diagonal
entries of DU are distinct and do not vanish. This means that DU is diagonalizable.
However, we can find

D such that the diagonal entries of DU are prescribed numbers. Now, we are able to
determine T . Let T be one of the matrices that bring the product DU into diagonal form,
i.e.,

TDUT  =(1-A) (11)

which completes the proof. 0

From the Lemma 1, it is clear that the product DU is diagonalizable. Thus, if U is
not diagonalizable, D in (11) can not be arbitrary.

Note 2:

Analogous to the proof of Lemma 1, we have the following. Let A=LU be the
decomposition of A with L and U are lower triangular and upper triangular matrices,
respectively. Then there exist non-singular matrices T and D, D diagonal, such that

uol =T(l-Ay? (12)
Theorem 2:
Let A be an nxnnonsingular matrix having an LU-decomposition outlined in
Algorithms 1 and 2. Then there exists a triangular splitting of A,
A=M —N (13)
such that the spectral radius p(l\/l ‘1N) can be made arbitrarily small. In particular,
fora given A =diag(44,4 5,..,4,) suchthat ;0 (i=12,..,n), the matrix M can be

chosen such that its spectrum of M “IN is the same as that of A.
Proof.

Let A=LU be the decomposition of A with L and U are lower triangular and
upper triangular matrices, respectively.

From Lemma 1, there exist matrices Tand D, D diagonal, such that

DU=T}(1-AJT

Defining M=LD"  and N=L(D'-U).  Then
M-N=LD"-L(D?-U)=LU-A

and M is lower triangular matrix. Thus, A=M —N s a triangular splitting. 0
Theorem 3:

Let A=LU Dbe the decomposition of A, and let 1,,i€l:n be real numbers. Then
there exists a splitting of A of type (13) such that M is symmetric and positive definite

matrix. Moreover, for any pe(01), M can be chosen such that p(l\/l ‘1N): p.
Proof:
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Let A=LU be an LU-decomposition of A. Then (12) guarantees the existence of
non-singular matrices T and D, D diagonal with positive elements, such that

upl =T(1-AT !
We can define a symmetric positive definite matrix M as
M = LDL'
and N =M —A=LDL" —LU = L(DLT —U). It follows that
—1 —1

MEIN=1-(" ' Dty =1 - (T 'pu = 1 -(utoLT)
=1 —(T(l —A)T ‘1)_1 =T H1-A)aT
To have p(l\/l ‘1N) arbitrary, it is enough to require

i)
max <
1-2,) "

Theorem4:
1 : 1-2 1 1
Let Ai=——,a>0,1=12,..,nand dj=——- Then MTN=TAT
1+ ai Uji
and p(l\/l ‘1N)< 1, where A =diag (44,4 5,..,4,) and T is a non-singular matrix.

Proof:

We have
M-IN=DLL(D?-U)=1-DU (14)
From Lemma 1, we have DU =T (1 —AJT . Then
M7IN =T AT

From (14), it has been that | —DU is triangular matrix having the eigenvalues A ; and

“N)= o1 —DU) = max 4 =
|,1i|<1,thenp(|v| N)_p(l Du)_LrQiaSM_lmd. 0

From the Theorem 4, it is evident that after choosing A ;, the splitting (13) will be
determined. However, for convergence of (9) we have to choose all |ﬁ i| <1

Corollary 1:
Let A be an nxn non-singular matrix having LU-decomposition. Then there exists a

convergent splitting of A of type (13) in which M is lower triangular matrix.
Suppose that all results in this section hold for decomposition with powers of a
Boolean matrix outlined briefly in the Algorithms 1 and 2 then A= LU . Thus, we obtain

y=L"Y and x=U"1y. Now we try to construct an efficient Splitting-based iterative
Method (SIM). In order to guarantee the convergence of this method, we take A ; such that
|4 ;| <1. Then we have the following algorithm.
Algorithm 4: (SIM)

1. Determine P = {(l j)\bi(Jm) =1} using Algorithm 1.

2. Compute LU by using Algorithm 2.

3. Choose d; by d; :ﬂ where 4; = -
uii 1+a

,(i=12,..,n), a>0.
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4. Compute LUx, =b by forward substitution and by back substitution algorithms.
5. Define (see Theorem 2) M = LD tand N = L(D‘l —U)

6. For u=0,1,...,until convergence achieved Do x,,; = (I —DU)x, + DL ™b.
Theorem 5:

Suppose A=LU and d; =

for all given |4;| <1. Then x, generated by

11
Algorithm 4 converges to the exact solution x~ of (1). However, A; can be chosen

sufficiently small such that Algorithm 4 has a fast convergence rate.
Proof:

Since x,,y =(1 —DU)x, + DL b and LUX =b. Then x,,; —x =(I - DU)U+1(XO —x*)

Where Bx, = B“*lxo. Thus |X,41 —X*HZ < p”*l(l - DU)(XO - X*Hz.
It follows from the triangular matrix | —DU having the eigenvalues |}Li| <1 that
p(1 —DU) <1 which implies |x,.; —x" , 0.

U—o0

<] Advantages of Algorithm 4:

1. At each iteration step, Algorithm 4 uses one product of a triangular matrix and vector
and two products of a number and vector, instead of solving two triangular systems.

2. Algorithm 4 is always convergent, which is guaranteed by Theorem 2-5 because

p(M_lN)<%.

3. All operations in Algorithm 4 can be done in the same precision. It is not necessary to
use double precision for iterative refinement.

4. Algorithm 4 can start with any initial approximation X .

5. We can choose p(l\/l ‘1N)<%, for example A ;= _1 1 where « >0, such that the
ai+

refinement sequence converges fast to the desired solution.
6. We can use incomplete decomposition to keep the desired sparsity, and then choose
A ;and d; for Algorithm 4.

7. Algorithm 4 is very useful for vector and parallel processing, because it just involves
products of a matrix and a vector.

(111). The Proposed Preconditioners:

Convergence of Krylov subspace methods can be significantly enhanced using
preconditioners. In this Section, we outline the preconditioning strategy we use.

The preconditioners considered in this work are based on ILU decomposition. The
ILU decomposition given in Algorithm 2 is based on the LU-decomposition of the
coefficient matrix A. In ILU(m) (ILU of level m), we use Algorithm 1 for determining
non-zeros which fill- L and U to a certain level m. A level function is used in an
incomplete factorization to control the number of fill-ins. Algorithm 2 together with the

m m+1
Algorithm 1 does produce an optimal preconditioner, when B2 =B?2 and we get the
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solution in one step. That is LU is approximately the exact decomposition of A because
there is no information left out during decomposition.

The preconditioning matrix M can be chosen to represent an incomplete LU-
decomposition of A. The ILU decomposition is defined so that M has the desired sparsity
pattern P . For all pairs (i, j)e P decomposition is carried out, other pairs are left out. The

commonest and simplest choice is P ={{i, j), aj; #0{, which allows no fill-in during
incomplete factorization. The choice P = {(i, j), ajj #0 leads to the preconditioner
ILU(0) which is not the best choice to be made. Although this is a simple and an effective

way of constructing M , in some cases it can differ significantly from A~ since too much
information was left out during the ILU decomposition. However, another approach to
achieve a powerful preconditioner is to allow some fill-ins. Increasing the fill-in cause an
increase of computational work associated with the matrix-vector operations and with the
ILU procedure. Therefore, we have introduced efficient and inexpensive technique to
define the sparsity pattern P .

It is important that M ! is never explicitly computed. Alternatively, we have
=M = Mz=v (15)

Case 1: Preconditioning Matrix M = LU
The system (15) can be solved by the following two steps:
Step 1: Forward substitution in LY =V .
Step 2: Back substitution in UZ =Y .
The preconditioning M = LU involves writing A as A=LU-R, withRas error
term. When solving the system (1) using the splitting A=LU-R, we consider the

system(LU) Ax=(LU)™b. The preconditioned matrix (LU)™A has to resemble the
identity matrix 1 as closely as possible. Because (LU)J™A=(LU)?*[(LU)-R]=1-(LU)'R,
then the matrix (LU)_lR should be as small as possible in some sense. We give two
Theorems which state that (LU)_1 is a proper approximation to A-1 if and only if

H (Lu)™ RH is sufficiently small for some matrix norm |.|.

Theorem 6:
Suppose LU —R is a splitting of the nonsingular nxn matrix A and the product
LU is nonsingular. Then

[0 e -ad
<
cond (A) | A-1]
where cond(A)=|A|.|A-1[the condition number of A, and LU is the ILU(m)

factorization.
Proof:

(LUY 'R =(LUY (LU - A) =1 —(LU) A= |at—(LU) A (17)

< H (LUY'R H (16)
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(Lu)yt-a'
frs =t e

by dividing the left and the right-hand side by ||A||.HA‘1H0ne obtains the first

inequality of (16). The second inequality follows from equation (16) and (17).
(LU)'R=[A"~(LU) |A=(LU) RA” :[A’l—(LU )]

:>HA‘1 LU) 7R H a4
After division by HA*H the desired inequality is obtained. O
Theorem 7:
If x is the solution of (1) and X satisfies LUX =b. Then
k% oy
<|(LU)™R
Proof:
We know that x—X=A—(LU) b= [A_ LU) JAx
But (LU)Y*R=(LU) (LU -A) =1 —(LU)™ [A—l (LU)” JA
Thus, we have x—X =(LU) ™ Rx
Taking the norm leads to the desired. 0
Theorem 8:

Suppose LU —R is a splitting of the nonsingular nxn matrix A, and H AR H <1.

Then
1 A-1R
cond [(LU )t A] < 1r] AR
1-] AR

where LU is the ILU(m) factorization.
Proof:
Suppose LUx equals the null vector 0.

LUx=0< (A+Rx =0 (1 + ARk =0= | AR =[x = [x] < | AR

Because H AR H <1 this implies that | x| equals 0 so x =0. This proves that LU is

non-singular.

cond [(LU )_lA} =cond [(A +R )_IA} =cond [(I +A7R )_1}
(1+[aR])

This completes the proof. [

:H | +A-R lH ) AR <1 +ATR)

By a Theorem of Atkinson [1] H + A_lR H m)
HA il
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The Theorem 8 states that we can make R as small as possible and this will have a
positive effect on the condition of (LU)™A.
Note 3:

m m+1
If B> =B2 , then the matrix A has approximately the exact factorization LU ,
i.e., A=LU because there is no information was left out during the ILU decomposition.

Consequently, M “LA=1andwe get the solution in one step.
Case 2: Preconditioning Matrix M =LD™;

The system (15) can be solved by Algorithm 4. The preconditioning M = LD
involves writing A as A=M —N, where N = L(D‘l—U). When solving the system using the

splitting M—N=LD‘1—L(D‘1—U), we consider the system (15). The preconditioned

1
matrix M‘lAz(LD‘l) A has to resemble the identity matrix 1 as closely as possible.

-1 -1
Because M4A=QD4) A=@D4)[uyi—dD4—u):Du,ﬂmnﬂm matrix DU
should be small in some sense. The next Theorem states that M ™! is a proper
approximation to A-1 if and only if H M‘lNH is small for some matrix norm |||

Theorem 9:
Suppose M —-N=LD*- L(D‘1 —U) is a splitting of the nonsingular nxn matrix A
having LU-decomposition. Then

H (o) b2 -u 1‘ HA—l ~(Lo)?
<
|+
where cond(A)=|A|.|A-1|the condition number of A, and LU is the ILU(m)
factorization.

<

cond (A) (LDil )71 '—(D “-u 1‘ (18)

roof: (LD_l)_l L(D‘l _U)= (LD_l)—l(LD-l - A)= I —(LD‘l)_lA{A‘1 —(LDJHA

At (Lo2)*

[~
by dividing the left and the right-hand side by ||A||.HA‘1Hone obtains the first
inequality of (18). The second inequality follows from equation (18).

(107 1(07-u)<[a-(107) Ja= (oL o0 Ja (0]

<

H(LD‘l)_l L(D_l —Ul At - (LD—l)‘lun Al= H

I~

:%%4—@D4)1§

(107} L (00 [l

After division by HA*H the desired inequality is obtained. 0

2.3. Numerical Experiments:
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In the foregoing, some examples are chosen randomly to illustrate the performance of
the proposed methods and the preconditioning discussed in the section 4. The direct
method used for comparison of CPU times is basically the same as LU with powers of a
Boolean matrix strategy as given in Algorithm 1. All experiments are performed on an
IBM Compatible PC with Pentium IV processor and 512 RAM. In our test runs, the zero
vector x, is the initial guess. The right-hand side b is taken to be b=Ax,

wherex:(l, 1,., 1)T, such that the solution of the system is just x. The equation solvers

have been implemented as C++ codes using double precision accuracy of £=107%. Finally

: : , . 1-24; .
in all considered examples we apply Algorithm 4 with d; ==——" with A, chosen, say,
Ui

A= ; (i =12,..., n), which found to guarantee the spectral radius p(l\/l ‘1N)< L
1+105i 106

and a fast convergence rate of the SIM. The number of iterations of GMRES method
denotes the number of outer iterations.

3. Results and Discussions:

In this Section, we introduce some examples to show the efficiency of the suggested
direct and iterative methods for solving (1).

Example 1 [4]:

Consider the system (1) whose coefficient matrix A is an nxn Hilbert matrix. The
matrix A is ill- conditioned for even modest size n. The well-known Hilbert matrix,
which has a large condition number, is used as a numerical example to illustrate the
performances of the considered algorithms. The computational results are as follows,

where xCMRES =y SIM =y SM %LU and X is the approximate solution obtained by GMRES
method [5], SIM, SM, direct sparse LU-decomposition method (DSLU) and Gaussian’s
elimination with row pivoting [4], respectively. The obtained results are reported in the

Table (1).

Table (1): The solution of Example 1 by the different methods.

Order (n) LU SM SIM GMRES Gaussian el.
0.99997735 0.99999996 0.99994979 1.00000000 2.08333330

4 1.00011003  1.00000022 1.00028675 1.00000000 0.24166670
0.99992049  0.99999980 0.99967540 1.00000000  0.02119045
0.99997437  1.00000000 1.00005815 1.00000000 -0.00023813
0.99999265  1.00000011 0.99996331 1.00000000  0.02283334
1.00004302  0.99999917 1.00072368 1.00000000  0.30833328

5 0.99996321  1.00000152 0.99799995 1.00000000  0.04230156
0.99999540  0.99999919 1.00127048 1.00000000 -0.00126315
1.0004800 1.00000001 1.00011624 1.00000000 -0.00001149
1.00000930  0.99999993 0.99981332  1.00000000  2.45000030
0.99994403  1.00000031 1.00123082 1.00000000 0.36785709

6 1.00007093  0.99999978 0.99829934 1.00000000  0.06545557
0.99997872  0.99999994 1.00015364 1.00000000 -0.00332178
1.00003600  1.00000004 1.00036251 1.00000000 -0.00007202
0.99995953  0.99999998 1.00016002 1.00000000 -0.00000054

From the table, the proposed methods give much more accuracy than that obtained
by Gaussian elimination. However, the preconditioned GMRES(10) method gives much
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more accuracy among the proposed methods. The SM gives good accuracy in comparison
with direct sparse LU-decomposition method (DSLU) and SIM. The SIM gives much more
accuracy in comparison with Gaussian elimination. Finally, the direct sparse LU-
decomposition method (DSLU) with powers of a Boolean matrix gives very good accuracy
in comparison with Gaussian elimination with row pivoting.
Example 2:

Consider the system (1) whose the coefficient matrix is given in [11], where
n=100,na =219.
Example 3:

Consider the system (1) whose the coefficient matrix is given in [11], where

n=400,na =1276.
Example 4:

Consider the system (1) whose the coefficient matrix is given in [11], where
n =1000,na = 2190.

We have used the methods described in this paper to construct a ILU-decomposition
for the coefficient matrices associated with the Examples 2 to 4. The ILU(m)
preconditioner is based on the powers of a Boolean matrix strategy. The results were

obtained with k =10 and for an iteration required precision of 107 is achieved. The
performance of the algorithms discussed in this paper can be considered by examination of
the statistics collected in tables (2) to (4). The tables show the timing information, the error
obtained in getting the solution and the number of iterations needed for the convergence of
the iterative methods for examples 2 to 4. The influence of m on convergence of the
GMRES method with the ILU(m) is also reported in the Tables. The second column in the
Tables shows the types of the preconditioners used. The third column shows the number of
non-zero entries in L and U together, which, of course, vary with the parameter m. The
fourth column shows how many iterations were needed to make the convergence criterion
satisfied. The fifth column gives the time needed for getting the solution. The last column
shows the error (relative residual) in finding the solution. The time needed to compute the
preconditioners is not included because it is found to be the same about. The influence of
k, the dimension of Krylov subspace [11], on the performance of GMRES using the
proposed preconditioners is tested. For all the tests carried out, the best value for k is
found to be 10.

Table (2): The timing information, the number of iterations and the error
in finding the solution for Example 2, where n =100, na = 219.

Method | Precond. No. of No. of CPU time Error
nonzero iteration (s)
entries S
LD (0) 219 2 negligible 5.7e-10
ILU(0) 219 9 0.054945 6.5e-10
GMRES 1 0a) 768 6 0.054945 | 3.4e-10
ILU(2) 1224 1 0.054945 1.3e-12
SIM - 1224 1 0.219780 2.1e-10
LU - 1224 1 0.054945 2.1e-8
SM - 1224 1 negligible 6.1le-12
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Table (3): The timing information, the number of iterations and the error
in finding the solution for Example 3, where n =400, na = 1276 .

Method | Precond. | No. of | No. of | CPU time | Error
nonzero iteration | (S)
entries S
hE (0) 1276 2 0.054945 5.4e-10
ILU(0) 1276 11 0.109890 1.1e-10
GMRES Hrum) 4522 5 0.054945 | 1.2¢-10
ILU(2) | 5491 1 0.109890 1.1e-12
SIM - 5491 1 0.274725 2.1e-10
LU - 5491 1 0.109890 2.1e-8
SM - 5491 1 0.109890 9.1e-12

Table (4): The timing information, the number of iterations and the error
in finding the solution for Example 4, where n =1000, na =2190.

Method | Precond. No. of No. of CPU time Error
nonzero iteration (s)
entries S
LD1(0) 2190 4 0.164835 | 5.4e-10
ILU(0) 2190 17 0.164835 1.1e-10
GMRES 1 0a) 9115 8 0.219780 | 1.2e-10
ILU(2) 11409 1 0.274725 1.1e-12
SIM - 11409 1 0.334628 | 2.1e-10
LU - 11409 1 0.329670 2.1e-8
SM - 11409 1 0.329670 9.1e-12

From the Tables (2) to (4), it has been seen that the GMRES method needs more
iterations to converge by using ILU(0). We also have found that the ILU(0) can not benefit
from k values greater than 10. From the obtained results we can observe that the
GMRES(10)/1LU(2) requires a small number of outer iterations, compared to the

GMRES(10)/ILU(m) (m=0.1) or GMRES(10)/LD 1 (0). That is ILU(2) is better than
ILU(m) (m=0,1) and LD *(0). The GMRES(10)/ILU(0) takes a short time to converge

but requires a large number of iterations. The LD -1 (0) preconditioner is better than the
ILU(m) (m=0,1) preconditioner in the term of CPU time and number of iterations.
However, the results show that the convergence of GMRES(10) improves as we increases
the value m from m=0 to m=2. From the results we can see that the preconditioned
GMRES(10) algorithm is the fast method followed by the SM and direct sparse LU-
decomposition method (DSLU). Note the direct sparse LU-decomposition method (DSLU)
and SM are equally effective i.e. the CPU time is the same for both SM and direct sparse
LU-decomposition method (DSLU). But the accuracy achieved by SM is much more than
that obtained by direct sparse LU-decomposition method (DSLU). The difference in CPU
time for direct sparse LU-decomposition method (DSLU) and SM comes from increasing
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the forward substitution and back substitution because of increasing the fill-ins. In the SM
it is found to be that ILU(2) is enough to achieve the desired accuracy. Thus, the SM is
recommendable to use. The SIM takes a small number of iterations, but requires a much
more time to converge. Finally, the GMRES performs the best and SM and direct sparse
LU-decomposition method (DSLU) are better than SIM.

4. Concluding Remarks and Recommendations:

In this paper, we have described efficient different methods for the solution of (1).
The practical comparisons of different implementations of the proposed methods, DSLU,
SM, SIM, and preconditioned GMRES have been shown in the terms of CPU time to solve
the same test problems. The numerical experiments indicate that the preconditioned
GMRES algorithm has been demonstrated to be superior or competitive with the other
considered methods. It should be noted that the SM provides much more accuracy to the
solution of (1). From the numerical results, we also see that it is advantageous to use
ILU(m ) preconditioner based on powers of the Boolean matrix strategy. It should be noted

that ILU(2) is the best in the terms of number of iterations followed by the LD~ (0). The

LD ~1(0) preconditioner is very successful in the terms of CPU time and number of
iterations. For all the tests carried out, the best value for k, the dimension of Krylov

subspace [11], is 10. It is recommendable to use LD ~1(0) preconditioner over ILU(2)
because there is no fill-ins. We end with the concluding remark to use GMRES(10) method

with ILU(2) or LD -1 (0) as preconditioners.
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