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O ABSTRACT 0O

This paper presents numerical methods for the solution of linear second-order
boundary value problems. These methods are based on C2-quintic splines, that is, fifth
Hermite interpolating polynomials with three collocation points. The error analysis and
sufficient conditions of the convergence for the presented methods when applied to BVPs
are considered. A study shows that the proposed methods consist of order five for (c;=1/2,
c,=3/4). Moreover, if:

1-3c, +2¢Z +¢,(5¢c, —¢? —3)+c5(2—6¢c, +6¢7) >0,

where 0<c, <c, <1,

then the regions of absolute stability of the methods contain some neighborhood of
infinity. They are also A-stable and possess unbounded regions of absolute stability. Four
widely applied problems are solved to illustrate the order and stability of the proposed
methods. The comparisons of the presented methods with other methods show that our
results are more accurate.
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1. Introduction

Linear boundary value problems (BVPs) can be used to model several physical
phenomena. For example, a common problem in civil engineering concerns the deflection
of a beam of rectangular cross section subject to uniform loading, while the ends of the
beam are supported so that they undergo no deflection. This problem is linear second-order
two-point BVP.

1.1. Importance of the Work

The main aim of this paper is to study spline collocation methods in order to compute
the numerical solution of linear second-order two-point BVP:

Llul= f,@t)u"+ f,()u'+ f,()u=g(t) te [a b], (1.2

where L is an second order differential operator, fo(t), fi(t), f2(t) and g(t) are given
functions and u is the unknown function of t, with on of the three boundary conditions
given below:

The boundary conditions of the first kind are:

u(@)=y,, ub)=7y, (1.2)
The boundary conditions of the second kind are:
u'(@)=y,, u'(b)=7, (1.3)

The boundary conditions of the third kind, sometimes called Sturm's boundary
conditions, are:

ag u'(a)-a; u(@)=y,, bo u'(b)+ by ub)=y,, (1.4)

where ag, bo, a; and b are all positive constants.

In (1.1) if g(t)=0, the differential equation is called homogeneous; otherwise it is
inhomogeneous. Similarly, the boundary conditions are called homogeneous wheny,, 7,

are zero; otherwise inhomogeneous.

The contribution is the development and analysis of spline collocation methods with
three collocation conditions for the numerical treatment of BVPs.

1.2 A Review of Previous Works

The fist optimal spline collocation methods proposed to solve BVVPs were based on
cubic splines. For one-dimensional second-order BVPs and uniform partitions, Fyfe [6]
proposed a deferred-correction cubic spline method, while [1] and [5] developed and
analyzed an extrapolated cubic spline method. Extrapolated and deferred-correction
quadratic spline methods, using the midpoints of the uniform partition intervals as
collocation points, were proposed and analyzed in [8]. These optimal cubic and quadratic
spline collocation methods were extended to two- dimensional second-order elliptic BVPs
for rectangular domains in [9] and [4], respectively. Optimal quintic and quartic spline
collocation methods [14,10] were developed for one-dimensional fourth-order BVPs on
uniform partitions. Christina and Ng [3] developed the optimal quadratic spline collocation
methods in [8] to non-uniform partitions. A class of three-point spline collocation methods
for solving delay-differential equations is introduced by Mahmoud in [12].

1.3 A Plan of the Paper

The outline of this paper is as follows. In Section 2, reducing the linear boundary
problems BVPs (1.1)-(1.3) to system of the initial value problems (I.V.Ps.) is presented.
Moreover, we introduce the precise description and the formulation of spline collocation
methods when applied to BVPs. Sufficient conditions for the convergence of the methods
when applied to BVPs are considered in Section 3. They show that the proposed methods
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are consistent with order five for (c1=1/2, c,=3/4). The absolute stability analysis is
devoted in Section 4. Numerical experiments indicate that the regions of absolute stability
contain some neighborhood of infinity if 0.803<c, <c, <1. In these cases the methods

are A-stable and possess unbounded regions of absolute stability. Section 5 includes
several test problems that illustrate the theoretical results. The comparisons of our
numerical results with other methods show that our results are more accurate. Finally,
conclusions and recommendations are finding in Section 6.

2. Description of the Spline Collocation Methods

The aim of this section is to present and analyze quintic spline collocation (QSC)
methods for finding a numerical solution of the second order two-point boundary value
problem.

2.1 Tow-Point Boundary Value Problem
Consider the two-point BVP (1.1)-(1.3):

u"=p)u’+qt)u+r(), te [a, b], (2.1a)
with either the boundary conditions:

u(@)=7,. ub)=7, (2 .1b)
or the boundary conditions:
u'(@)=y,, u'(b)=7 (2.1c)

where we assume that f,(t)0, p(t)=-f1(t)/f2(t), q(t)=-fo(t)/f2(t) and r(t)=g(t)/f2(t).

If (2.1a)-(2.1c) satisfies

Q) p(t), q(t), and r(t) are continuous on [a, b],

(ii) q(t)>0 on [a, b],

then the problem has a unique solution [2].

First, finding the solution of the linear boundary problem (2.1a)-(2.1b) is assisted by
the linear structure of the equation and the use of two special value problems. Suppose that
v is the unique solution to the initial value problem (1.V.P.):

V"= p(t)Vv'(t) +q(t)v(t) +r(t) withv(a)=y,and v'(a)=0. (2.2)
In addition, suppose that k is the unique solution to the (1.V.P.):
K"=p)k'(t) + q(t) k(t) with k(a)=0 and k'(a)=1. (2.3)
Then the linear combination
u(t)=v(t)+c k(t), (2.4)

where ¢ is a unknown constant to be determined from the boundary conditions. Note
that relation (2.4) is a solution to problem u”=p(t)u’+q(t)u+r(t), as seen by the
computation:
u"=v+c k"= p(t)Vv'(t) +qt)v(t) + r(t) +c pt)k'(t) + cq(t) k(t)
POV (1) +ck’ O +a®[v(t) +c k(B)]+r(t)
pOUM) +atyut) +r(),
where u'(t)=v'(t)+c k'(t).
The solution u in equation (2.4) takes on the boundary values (2.1b):
u(@)=v(a)+c k(@)= y,+0=y,,
u(b)=v(b)+c k(b). (2.5)
Imposing the boundary condition u(b)=y, in relation (2.5) produces
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_ 71— v(b)
k(b)
and, consequently, when k(b)#0, the unique solution to BVP (2.1a)-(2.1b) is:
_ 7 —Vv(b)
t)=v(t)+ k(t 2.6
u(t)=v(t) <®) (t) (2.6)

In the other hand, the solution of BVP (2.1a) with the boundary conditions of the
second kind (2.1c) is obtained in an above similar way; we thus suppose that v is the
unique solution to the initial value problem (1.V.P.):

V' = p@)V'(t) +q(t)v(t) +r() with v(a)=0and Vv'(a)=y,. (2.7)
Also, suppose that k is the unique solution to the (1.V.P.):

k"= p@)k'(t) +g(t) k(t) with k(a)=1 and k'(a)=0. (2.8)
Then the linear relation:

u(t)=v(t)+c k(t) (2.9)

is a solution to BVP (2.1a)-(2.1c):
u"= ptu’'(t) +at)u(t) +r(),
where u'(t)=v'(t)+c k'(t),
u"=v"(t)+c k" (t).
The solution u in equation (2.9) holds the boundary values:
u'(a)=v'(a)+c K'(@)=7, +0=7,,

u'(b)=v'(b)+c k'(b). (2.10)
Imposing the boundary condition u'(b)=y, in relation (2.10) produces

_7n-V(b)

k'(b)
Hence, if k'(b)#0, then the unique solution to BVP (2.1a)-(2.1b) is:
_ r=V'(b)

u(t)=v(t)+ 211

(t)=v(t) K 0) k(t). (2.11)

2.2 Formulation of the Spline Approximations
Let a=t, <t <..<ty=b be a uniform partition of interval [ab] with

h=(b—-a)/N and t, =a+ih for i=0(1)N. Let S, € C? be the quintic spline collocation
approximation of u(t) into each subinterval I;=[t, ,,t,]such that

S, ()= 7°[(67% +3r +l)Slf?i)_l +@Br?+7)SY, + (3 12)852,)_1]

u,i-1

2.12
+7°[(67 2 +37+1)S) —Br 2 +7)SY + (:7%)S?] (212
' (2.13) Séou)—l =3, (i), Sﬁ—l =hS;(t,), Sézu)—l =h? Su(tiy)
where z=(t—-t,,)/he[01],7=1-7.
Differentiating (2.12) two times, we have
hS,(t)=7°[-3072S\%, + 1+ 27 -157*)S)  + (r - 37%)S.
O =77 2+ ( )Syia +( )u,l, (2.14)

—7°[-307 2SS —(1+ 27 -157 2)SY) + (T -37%)S ]
h2S!(t) = 7[(120r* —607) S, + (607 —367)S (1)_1 +(1072 =87 +1)S? ]

u,i- u, i

. (2.15)
+7[(1207% -607)S{? + (367 —607°)S{) + (107% —87 +1)S 7]
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2.3 The QSC Methods for BVPs (2.1a)-(2.1c).

First, for solving BVP (2.1a)-(2.1b), it is equivalent to apply the spline
approximations (2.12)-(2.15) to two initial value problems (2.2) and (2.3) to obtain the
systems:

S\’/'(ti—l+Cj ) = p(ti—l+Cj )S\; (ti—1+Cj ) + q(ti—h—Cj )Sv (ti—l+Cj ) + r-(ti—1-¢—CJ- ) ) (216)

J=1(1)3, i=1(1)N,
with initial values

SW@)=7,, S'v (a)=0, S"y (a)=q(to) 7, *+r(to) (2.162)
and
Slf(ti—hcj ) = p(ti—lJrCj ) SI: (ti—lJrCj ) + q(ti—1+CJ- )Sk (ti—l+Cj ) ) (217)

J=1(1)3, i=1(1)N,
with initial values

Sk(@)=0, Sk (a)=1, S" (a)= p(to). (2.173)
Hence, when Si(b)#£0, the spline approximation to BVP (2.1a)-(2.1b) is:

_ 71— S,(b)
Su (ti—l+Cj ) =Sy (tifl+Cj ) + lSk (b) Sk (ti—1+Cj ) (2-18)

j=1(2)3, i=1(1)N.

However, the approximate spline solution of the BVP (2.1a) with the boundary
conditions of the second kind (2.1c) is obtained by applying the spline approximations
(2.12)-(2.15) to the two initial value problems (2.7)-(2.8), namely:

s\’/'(ti—lJer ) = p(ti—lJrCj )S\; (ti—1+CJ- ) + q(ti—hcj )Sv (ti—lJrCj ) + r(ti—l+CJ- ) ) (219)

j=1(2)3, i=1(1)N,
with initial values

Sv(@)=0, S'v (8)= 7. S"v (8)=p(to) 7, +1 (ko) , (2.192)
and
Slf(ti—th ) = p(ti—lJrCj ) SI: (ti—lJrCj ) + q(ti—1+Cj )Sk (ti—l+Cj ) ) (220)

j=1(2)3, i=1(1)N,
with initial values

Sk(a)=1, Sk (a)=0, S"x (a)=q(to). (2.20a)
Therefore, if S'x (b)#0, the spline approximation to BVP (2.1a)-(2.1c) is:

_ 71 =S.(0)
Su (ti—l+Cj ) =Sy (tifl+Cj ) + Sl: (b) Sk (ti—1+CJ- ) (2-21)

j=1(1)3, i=1(L)N,

Note that we used collocation points t c, =t,, +¢; h, j=1,2,3, in each subinterval

i—1+

li=[t,_,,t;], iI=1(1)N, with 0< ¢;< c2 < ¢3=1, C; =1-c¢;, J=1,2,3.

3. Convergence Analysis and Error Bounds QSC Methods

In this section, we study the order and convergence properties of QSC methods when
applied to linear BVP (2.1a)-(2.1b) or BVP (2.1a)-(2.1c). We will assume that p(t)=q(t)=1
in (2.1a) and that, without loss of generality.

Applying the spline approximations (2.12)-(2.15) to BVP (2.1a)-(2.1c), we obtain:
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S/(t) =S, (t)+S, ) +r(t), (3.1a)

Su(to)= 7o, Sultn)=71. (3.1b)

S'u(to)=7,, S'ultn)= 7, 3.1c)
And letting S(t), S'(t),S"(t) satisfy the collocation conditions:

SJ(ti—th ) =S, (ti—l+Cj )+, (ti—l+Cj )+ r(ti—1+Cj ) J=1.2,3,i=1(1)N, (3.2)

where, ti_1+C e[t ,,t.], and 0<ci<c,<c3z=1. One easily has to determine the values
S =S, (%), S& =hS! (%), S =h?S/(x,) from the previous step if i >1.

We can write system (3.2) as follows:
[c;(120c” —60T;)S? + ¢, (36C; —60C)S{) +c, (lOc -8¢; +1)SP1/h? +

[(-30cic?)S{? +ci@se —2¢;, —)SY +ci(c; —2.5¢7)S{1/h+ (3.3a)
C:(— C C — +c (3C7 +¢C; .oC:C =
[c3(-6C; -3¢, -1)S? +¢3(3c] +¢;)S{ — (0.5¢3¢C )s<2>]
C;(60c; —120c; iy +C;(36¢c; —60c; ' . +C.(8c;, —10cs — . +
[C,(60c; —120c?)SY, +¢,(36¢; —60c?)S{ | +T;(8¢c; —10c? —~1)S? 1/h?

Ui-1
[(-30c/ci)S{%, +C/(1+2c; —15¢%)S™, +T7(c; —2.5¢5)SZ  1/h+
[c}(6¢% +3c; +1)SLE°,’ , +C)(3ci +¢;)S, +(0.5¢7ct)S 1+
r(ti—l+C- ) =12,
S@ =hs® +h? S@ +hr(t,) . (3.3b)

Substltutlng S =hs® +h* S +hr(t,) and S&, =hSH, +h* SO, +hr(t;,)
into (3.3a)-(3.3b), we get the equwalent recurrence formulae:
{A§u,i =BS, 4+ h’GR,,

SO —hs® +h?SO 4hir () O (34)
where
[—c,[c (12 +h?)(Be,h +¢2h? —20) + - —c,[c (h—6)(5¢;h +c2h? —20) — |
2€,(60+8h? +3c2h? —¢,h%) + - 2¢,(36 -8 — 2¢,h + c;h? +c2h?) -
2¢2h? —2h?]/2 2h+2c,h]/2
A=  E PP PERPRPERS
—,[cz(12+h2)(Be hczhz—20)+  —c,[63(h—6)(5c,h+czhe—20)-
2C,(60+8h? +3c2h? —c,h®)+ . 2C,(36—8h—2c,h+c,h? +c2h?) -
| 2c;h? —2h?]/2 §2h+2c2h]/2
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[1cc?(12+h?)(ch? -56h—20)+  Scy[ci(h+6)(Ch? —5C,h—20) + ]
2¢,c,(60+8h? +3c2h? +¢,h?)+  2¢,(36+8h+2Ch+¢,h? +E2h?) +

¢, (ch? + h—1)h? - 2c,h-2n]

B= .............................................................
Jeca(2+h?)(Ezhe-5eh-20)+  1g[cz(h+6)(czhe-5e,0-20)+
2¢,¢,(60+8h? +3c2h? +C,h?) +  2¢,(36+8h +2C,h +C,h? +c2h?) +

| G, (€2h? +h—1)h? - 2c,h-2h] |
c,(8c, —10c? ~1) +cicth? 2+ ) ¢, (8¢, ~10c? 1) +cieh? /2 + |
¢/ (c,—2.5¢)h g -25e)h

G=| T ,

,(8c, ~10c2 ~1)+cic?h?/2+ 0 1 c, (85, ~10c% —1)+cic2h? /2 +
& (c, —2.5¢c5)h I ¢2(c,-25CH)h

§u,i = (Si(O)'Si(l))T1 Bi = (ri—l’ ri—l+Cl’ri—1+C2 ) ri)T .

3.1 Matrix Analysis of QSC Methods

Now, we present the properties of the spline collocation matrices which arise from
applying the spline method (c1=1/2, c,=3/4) of linear system (3.5) with boundary

conditions (3.1b) or (3.1c). We can show that the matrices A and B in the linear system
(3.5) are non-singular because for the method (c1=1/2, c,=3/4), we have

(—=120h —48h? —2h® —h*) (96 +12h +8h* —h?)
A= 64 64
9(12h* —3h* —268h* — 240h —1280) 9(896 —136h + 54h? —3h®) ’
2048 2048
whence
A= 9(30720-17280h + 304Oh;2+72;10h3 —202h* —39h° —3h°®) 40,V hel0, 2.38].

That is, |A|—>135/16, as h—0.
Moreover, for the same method (c1=1/2, c,=3/4), we get

(—120h + 48h? —2h® + h*) (96 —12h +8h? + h®)
B= 64 64 |
9(3h* —28h* —36h* —720h —3840) 3(-1152 —-360h — 2h? + 3h?)
2048 2048
and hence
Bl= 3(92160 + 40320h + 336022;6;20h3 —126h* +21h° —h°®) 20, v/ he[0, 9.68].

It is easy to find that |B|-—>135/16 as h—0. Thus, linear system (3.4) with boundary
conditions (3.1b) or (3.1c) exists and has a unique spline approximation solution given by:
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S,i=A"BS,,+h* A"GR,;
(3.5)

S? =hS® +h?S® +h?r,(t,)
3.2 Convergence and Error Bounds of QSC Methods
Here, we need the following definition:
Definition 1:[7] A method is said to consist of order p if max| d; |=O(h"), where
0<i<N

di is a global discretization error at X;.
Theorem 1 Let ueC'[a,b], then the QSC methods (2.16)-(2.17) or (2.19)-(2.20)

are consistent of order five for (c1=1/2, c,=3/4).
Proof. We obtain from the system (3.5) the local discretization error:

where r(t) =u"(t)—u’'(t) —u(t).
Using Taylor’s expansions for the functions u(t), u'(t) and u"(t) about tj, ti—l+Cj :
j=1,2,3, and substituting in (3.6), we get:
h® (—46080 + 3840h — 4640h? + 292h*® — 60h* + 3h°)

_ | 5760(-30720 + 17250h —3040h* —240h* + 202h* +30h° +3h°) | (o (t..)+O(h")
! h® (61440 +15360h +19840h? + 760h° + 616h* —6h° +3h°) - ’

5760(—30720 +17250h — 3040h? — 240h® + 202h* +39h° + 3h®)

where
u(t) = 5 hku‘”(t )+h6u(6>(t )28 +0(h"), uelt,,,t] (3.7)
_kZ:(;F /T e i-1)7 A USTUNE -
Therefore, from the Taylor’s expansions of rational functions about h are:
h® (~46080 + 3840h — 4640h? + 292h*® — 60h* + 3h°) _h° o)
5760(~30720 +17250h — 3040h* — 240h® + 202h* +39h° +3h®) 3840 ’
h°® (61440 +15360h +19840h* + 760h° + 616h* —6h° +3h°)  h° +o(h")
5760(—30720 +17250h — 3040h? — 240h® + 202h* +39h° +3h®) 2880 ’
whence
h°/3840] )
= u®(t,)+0(h").
h® /2850

6
Thus, | d, |= ﬁ lu®(t,_,)|+O(h") =0(h®). Since the proposed methods are
exact for polynomials of degree <5, and noting that local discretization error is of order six,
we deduce according to Definition 1, that the methods are thus consistent of order at least
five. This completes the proof.

Corollary 1. Let u € C'[a,b] be Lipschitz continuous, then the spline approximation
S, (t) given by (2.12)-(2.13) converges to the solution u(x) of (2.1) as h — 0 for all ¢y,
c2<(0,1), with ¢1# ¢, and

limhsP ) =u®(,), j=0@)2, e=ab.
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Furthermore, the convergence order is > five, i.e., we have

[u®t)-h™*s®t)|<C.h® k=012, i=11)N, (3.7a)
and
[u®(t,)—h?SP(t,) |<C,h%, i=1D)N, (3.7b)

whenever the initial and boundary conditions satisfy (3.7) (with i=0).
In addition, for t=t;, i=1(1)N, estimating the interpolation errors of the spline
approximations is as followed:

S, () ~u(t|= L Ut )" O, telt k]

S, (1) —u'(D) = %u@ (t,)h® +O(h°), t et 4],
2,0 -] = 7T E Dy ht + O, telt ], LN,

where z=(t—-t,,)/he[0,1], 7 =1-7 and,
S,(t)=7°[(6r ? +3r +u(t,,) + Br * +r)hu'(t, ;) + G ?)h%u"(t; )]

+7°[(67"° +37 +u(t,) — BT +D)hu'(t,) + 3 72)h%u" ()] '
Moreover, the following global error estimate holds true:
u® () -s¥ ()] <C.h**, k=004, telab].

4. Absolute Stability of the QSC Methods

Here, we restrict our attention to the linear stability properties of the QSC methods.
Applying the proposed methods to the test equation:
U”"-2U =0, (4.1)
where 1 e Cis arbitrary, we get from (2.12)-(2-13) and (2.15) the equations
S& =28, s, =287, (z=(hA)?)

and
[c;(120c” —60c)) —3Zc,C;(3—C; -3¢ +2C) - z 2(c3cH)1s?

+[c, (36T, —60C7) + Zc (C; +3c))1S{) =

(4.2)
[c; (60c; —120c}) +3Zc;C; (3+3c; -3¢} +2¢})+ 52%(c5T))IS(,
+[c, (36¢; —60c])+ 2T} (c; +3ci)IS, | j=12.
And after simplifying these expressions, we get
C(2).S; =D(2)S, (4.3)
where
)= 120c, —60-3Z(3-3¢, -3¢, +2¢) - $Z°c/c, 36-60C, + Zc (1+3C,)
120¢, — 60 —3Z (3 -3¢, — 3¢2 + 2¢7) —%zzcze2 36— 60C, + Zc2(1+3C,)
and

222



Tishreen University Journal. Bas. Sciences Series 2007 (1) 231} (29) alaall &uulul) aslall @ (35 daala dlas

60 -120c, +3Z(3-3c, —3c? +2¢}) + 52?2, 36-60c, +Z T2 (L+3c,)

D(2) = _ _ a2 3y, 1522 _ =2
60 -120c, +3Z(3-3c, —3c; +2¢;) +52°C,¢, 36-60c, +Z¢; (1+3c,)

Thus, by definition, z=(hA)*belongs to the region of absolute stability
Q= Q%Cz of the methods if the eigenvalues x, =u,(z)and u, =u,(z) of the generalized

eigenvalue problem
nC(z)x=D(z2).x, x=0, (4.49)

lie inside to the unit disc in the complex plane, i.e. if

|y ey <1 (4.5)

The coefficients of the quadratic (in ) characteristic  equation
det (uC(z) —D(z)) =0, are polynomials of degree 3 in Z which makes it almost
impossible to find explicit descriptions of Q EQ%Cz by (4.4)-(4.5) directly. Instead, we

first consider the asymptotic behavior as z — oo. Multiplying the characterizing equation
by Z72, we get

lim Z” 3 det(4C(2) - D(2)) = _%(quﬂ +¢,67) ¢/ (1+3C)u—C}(1+3c,)
% —%(Cgﬁzy—kczﬁj) c;(1+3¢,)u—¢; (1+3c,)

=(c2c2) u® +(c,C, +C,C, +4c,C,C, —4C,C,Cl ) u+ T Cr.

Thus, some neighborhood of z — o is contained in Q = Qc ¢, if the two solutions

py =1 (), pt, =p,(0) of the equation:
(cfc?) u® +(cC, +c,C, +4c,c,C, —4c,C,c2) u+C.2 =0,

hold the inequalities (4.5).
We can find by using Mathematica program that

max (| ;|| w1, ) =1+[(c;, +¢,)C,C, + (T, +C,)c ¢, +4c¢,C, CT,
—(€.,)* ~ (66,)°1/c.C,C.C,
Consequently, putting ¢; =1-c;, j=1,2, formax (|, |,|x,[) <1, we get the
inequality

1-3c, +2¢? +c¢,(5¢c, —¢Z —3)+c5(2—6¢c, +6¢7) >0, (4.6)
which satisfies (4.5).

For various c,andc, the stability region QEQC-L,CZ was obtained numerically by

determining the boundary curve z=1z(p)according to det(e”C(z)—D(z))=0

223



dgana Lan T gy Al Ayl e Al Alialds Y olee o) Auselall 4555l (e drene Lnilypd 3150

(cf.[7],Ch.2). Numerical experiments indicate that for 0.803<c, <c, <1, the methods will

be A-stable independent of the particular choice of the two interior collocation points (cf.
Table 1).
Fig.1 depicts the regions of absolute stability for ¢, = 0.5and different c,. Also,

some regions of stability in the case ¢, =0.75 and differentc, are listed in Fig 2.

Im(z)

Re(z)

-900

-400

Fig.1: Some regions of absolute stability for C, = 0.5 and differentC,

Im(2)

250

-250

Fig.2: Some regions of absolute stability for C;, = 0.75 and differentC,
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Table 1: Some intervals, which determine some unbounded regions of A-stability

05<c; | 0.9999<c, <1 | |wml<; | 12/<9.9E-15
0.60<c, 096<c, <1 | |m]<0.9611; |l<1.709E-3
0.65<c, 0.93<c, <1 | |14]<0.9494; |1|<8.127E-3
0.70<c, 0.90<c, <1 | |11]<0.9439; |u,|<2.402E-3
0.75<c, 0.86<cC, <1 | |11<0.9541; |1|<3.086E-3
0.80<c, 0.8l<c, <l | |141]<0.9786; |ul<3.514E-3
0.8028<c, | 0.805<c, <1 | |4]<0.9990; |z4|<3.635E-3
0.803<c, | 0.803<c,<1 | |4]<0.9980; |z4|<3.629E-3

5. Numerical Results

In this section, we present numerical results to demonstrate the convergence of the
spline collocation methods for BVPs with uniform grids. All computations were carried
out in double precision. We have programmed the QSC methods in Mathematica. The
experiments below are designed to test the efficiency of the spline methods for linear
BVPs. These problems have exact solutions. Thus, we compute their actual errors.

Problem 1. Consider the linear BVP (cf. [3]):
u"+u'-u=g, te (0, 1),
u(0)=0, u(1)=1.
The function g is chosen so that u(t)=t", >0, is the solution to the problem. In
Table2, we compared the absolute error norm of QSC methods with other method.

Problem 2. Solution of the second problem has a boundary layer at the left endpoint.
The parameter » controls the sharpness of boundary layer.
{@+nt)u} =0, te(0, 1),
u(0)=0, u(1)=1.
The analytical solution to this problem is u(t):M
log(1+7)
values of #. The function u with large # increases very sharply near t=0. In order to
accurately capture this property in the approximate solution, appropriate collocation points
of the QSC methods should be used. Fig. 4 illustrates both the approximate solution and
the exact solution for N=32, with n=100. Table 3 shows the comparisons of absolute error
norms of QSC methods with other method for various values of # =1, 100, 10000.

. Fig. 3 plots u for various
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ne10000 n=1000  m<100 T

(@)
(@]
N
(@]
o~
(@]
o
(@]
oo
=

Fig. 3: The exact solution u of Problem 2 with different n constants.

191
0.8 +
06 +
0.4 4
0.2 1

I:I T T T T T T T T T 1
g 01020304 050607 0805 1

U

Fig. 4: The exact solution u of Problem 2 and the approximate
solution computed by our method for, n=100, with N=32.

Problem 3. Next, we consider the boundary problem [13]:

2t 2

u"(t) = u'(t) — u(t) +1,
® 1+t2 ® 1+t2 ®
u(0)=1.25, u(4)=-0.95, te(0, 4),
with the analytic solution:

u(t) =1.25+ 0.4860896526t — 2.25t° + 2t arctan(t) — % In(1+t2) + %tz In(1+t2).

Table 4 shows the comparisons of absolute errors of the QSC methods with the
Runge Kutta method of the order four.
Problem 4. Finally, we consider the boundary problem [11]:

w(n) =2 ut)- =,

t? t

226



Tishreen University Journal. Bas. Sciences Series 2007 (1) 231} (29) alaall &uulul) aslall @ (35 daala dlas

u(2)=u(3)=0, te(2, 3),
with the analytic solution:

1 36
u(t) = — (19t -5t* - =5).
(t) 38( t)

Table 5 appears the comparisons of absolute errors of the QSC methods with the
Numerov method of order four.

Table 2. The absolute error norm for the approximate solution of Problem 1.

. Quadratr;::eiﬁ(ljlgsc[osl]locatlon Presented QSC Methods
_ _ _ _ ¢1=0.5, ¢,=0.7, | ¢1=0.25, ¢,=0.7,
g=3, p=15 q=7,p=0.5 =3 =7
16 -- -- 1.735E-18 6.8192E-09
32 1.49-7 1.03-5 1.166E-18 2.0848E-10
64 9.37-9 6.41-7 6.234E-19 6.4440E-12
128 5.87-10 3.74-8 1.626E-19 2.0033E-13

Table 3. The absolute error norm for the approximate solution of Problem 2.

Quadratic splin collocation
N methods[3] Presented QSC Methods
|E(w;)| ¢,=0.25, ¢,=0.7
n=1
16 2.26E-06 2.0098E-10
32 6.01E-08 6.4137E-12
64 2.84E-09 2.0224E-13
128 1.64E-10 6.3698E-15
=100
7.6373E-06,
16 4.19E-03 ¢,=0.25, ¢,=0.700074
3.3573E-06,
32 2.36E-04 €,=0.25, ¢,=0.7027
5.2456E-07,
64 1.43E-05 ¢,=0.25, ¢,=0.705611
1.6313E-08,
128 8.91E-07 ¢,=0.25, ¢,=0.70752
1=10000
16 4.1799E-05,
c,=0.4131158 , ¢,=0.96
4.0435E-05,
32 1.62E-03 c;=0.41614811, ¢,=0.96
3.6550E-05,
64 1.14E-04 C,=0.4174018 . ¢,=0.95
2.1389E-06
128 7.43E-06 ¢,=0.38706657, ¢,= 0.85,
1.6591E-07,
256 5.12E-07 €,=0.3925753 , ¢,= 0.85,
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Table 4. The absolute errors for the approximate solution of Problem 3.

T Runge-Kutta method Presinfeodzgscc_lg/lsthods
of order four [3] 17Ees, B2m O
Absolute Absolute | Absolute Error, | Absolute Error,
Error, h=0.2 | Error, h=0.1 h=0.2 h=0.1
0.2 4.2E-05 2.0E-06 1.57436E-08 | 7.00537E-11
0.4 7.9E-05 5.0E-06 2.52923E-08 | 1.38371E-10
0.6 1.10E-04 6.0E-06 3.01861E-08 | 1.82378E-10
0.8 1.36E-04 8.0E-06 3.30960E-08 | 2.06604E-10
1.0 1.58E-04 1.0E-05 3.53135E-08 | 2.22929E-10
1.6 1.98E-04 1.0E-05 3.95995E-08 | 2.62724E-10
2.0 2.03E-04 1.2E-05 3.98059E-08 | 2.79501E-10
2.4 1.93E-04 1.2E-05 3.74028E-08 | 2.84141E-10
2.8 1.68E-04 1.1E-05 3.22421E-08 | 2.75365E-10
3.2 1.26E-04 7.0E-06 2.42706E-08 | 2.52789E-10
3.6 7.10E-05 5.0E-06 1.34699E-08 | 2.16305E-10
4.0 1.00E-07 1.0E-08 1.65880E-10 | 1.65880E-10

Table 5. The absolute errors for the approximate solution of Problem 4.

Numerov method |Presented QSC Methods
t of order four, h=1/4 €1=0.24, ¢,=0.7,
[11] h=1/4
2.25 2.5E-06 2.405279E-09
2.50 2.4E-06 2.652336E-09
2.75 1.6E-06 1.683887E-09

6. Conclusions and Recommendations

A collocation approach which produces a family of order five methods has been
described for the approximate solution of second-order two point boundary value problem
in ordinary differential equations. Four test examples have been solved to compare the
accuracy of the methods with other methods. A look at Tables 2,3,4,5 clearly shows that
the presented methods are better in accuracy than other methods.

Finally, we recommend the following:

e Establishing the QSC methods for solving higher order linear and nonlinear
boundary value problems in ordinary differential equations.

e Studying the QSC methods for solving boundary value problems of delay and
algebraic differential equations.

o Investigating the QSC methods for numerical treatment of boundary value
problems in partial differential equations.

e Applying the methods for solving problems in dynamical systems.

¢ Using the methods for solving problems of stiff differential equations.

e Investigating the spline collocation methods for solving boundary value problems
in Volterra integro-differential equations.
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