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O ABSTRACT O

In this paper a study of the existence, uniqueness, stability and convergence of a class
of C?-spline collocation methods for solving delay differential equations (DDESs) is
introduced. The presented methods are based on C?-Spline with three collocation points
Xiec, = X4 +¢;h, j=113, ¢,c,e(0)), ¢ =#cand c,=1in each subinterval
I, =[%_4. %], i =1(1)N. It turns out that the proposed methods for DDEs are stable iff
¢, +C, >1, and they possess convergence rate of order 6 if 58—57(c, +c,)+55¢c,c, =0, in the
remaining cases the order is 5. Moreover, the methods are P-stable for

0.8028 <c, < c, <1. Numerical results illustrating the behavior of the methods when

faced with some difficult problems are presented and the numerical results are compared to
those obtained by other methods.
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1. Introduction

Delay differential equations (DDEs) arise in many areas of mathematical modeling:
for example, population dynamics (taking into account the gestation times), infectious
diseases (accounting for the incubation periods), physiological and pharmaceutical kinetics
(modeling, for example, the body’s reaction to CO,, etc. in circulating blood) as well as
chemical kinetics (such as mixing reactants), the navigational control of ships and aircraft
(with respectively large and short lags), and more general control problems.

1.1 Contributions of the work
The main contribution of this work is the development and analysis of spline
collocation methods with three collocation conditions of the numerical solution of DDE:

y'(x) = f(x, y(x), y(a(x))), xe[ab]
Where f e C*([a,b]xRxR)is Lipschitiz continuous with respect y. The function
a(X) < X, x €[a,b] is usually called the delay function. For a = inf [a(x)], we assume that
the initial condition is given by y(x)=g(x), x[a,a] for a given function g(x).

1.2 A review of previous work
The stability of numerical methods for DDEs has previously been considered in [8,
10, 18, 19] based on the linear DDE
y(X)=Ay(X)+qg y(x—1), x>0, (1.1a)
y(xX) =9(x), x<0 (1.1b)
Where A,qeC, t>0, and g(x) is an initial function. It is known that if g(x) is
continuous and if | q|<—Re(A), then the solution y(x) to (1.1a)-(1.1b) tends to zero as
X —> 0.,

In"tHout [12] has considered adaptation of the class of Runge-Kutta methods for
DDEs. The numerical stability of linear multistep formulas has been studied in [8,9,18].
Results on the P-stability and GP-stability of some numerical methods have been given in
[8, 19]. Using continuous Runge-Kutta methods for numerical solution of retarded and
neutral DDEs by Hayasshi [11]. Engelborghs et al. [5] have introduced collocation
methods for the computation of periodic solutions of DDEs.

A collocation procedure with polynomial spline functions of degree m >3 and
continuity class C™? is considered for numerical solution of a second initial value problem
for neutral DDEs by Akca et al. [1].

El-Hawary & Mahmoud [2, 3, 4] presented C3-Spline collocation methods for solving
ordinary and algebraic differential equations including stiff differential equations. They
showed that the method is successfully applied in [2] for solving systems of stiff equations
and in [3] the method is accurate for solving dynamical systems, also in [4] the method is
effectively applied for solving higher index differential-algebraic equations.

1.3 An outline of the paper

The paper is organized as follows. In Section 2 the precise description of spline
collocation methods is provided. In addition, it contains an investigation of the existence
and uniqueness of the proposed methods when applied to DDEs. Sufficient conditions for
the convergence of the methods are given in Section 3. A detailed study for stability is
presented in Section 4. Finally, we conclude with numerical test examples and conclusion
in Section 5 and 6.
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2. Description of spline collocation methods for DDEs.

Consider the following initial value problem for DDEs
y'(x) = £ y(x), yla()]},  xe[a,b] (2.13)
y(x)=g(x) for a<x<a (2.1b)

where f e C®([a,b]x Rx R)is Lipschitiz continuous with respect y, a = inf [o(X)].
The spline methods use three-collocation points

X1, = X1+ c;h, j=1(1)3 ineach subinterval [x;_;,;], i =1(1)N, with
O<c <c,<1 (2.2)

and h=(b-a)/N is the constant stepsize, where ¢, =1, X, =a, X, =Db.

Denote by x, =a-+ih, i =0(@)N, the grid points of the uniform partition of [a, b] into

subintervals I; =[x;_4,%;], i =1(1)N.

A quintic C%spline functions S(x) can be represented on each I; by [17]

S(x)=c®[(6c® +3c+1)S? +(3c? +¢)SY +(:¢*)S?

(2.3)
+c®[(6c'? +3c'+1)S® —(3c'? +¢")S® + (4¢'*)S?]
where ¢ = (X_—hx"l) €[0,1],¢c'=1-cand
S =5(x.), S® =hS'(x,), S® =h?S"(x.), i=01)N (2.4)
Differentiating (2.3), we get
hS'(x) =c?[-30S% +(1+2c-15¢*)SH +(c-3¢?)S?] (25)

—c?[-30¢'* §{@ —(1+2¢'-15¢" *)S + (c'-3¢'?)S{?]

We formally apply these methods to (2.1a), for S(x) to be satisfied by the three
collocation conditions:

S’(Xi—hcj )= f{xi—hcj ’S(Xi—l+cj )!S[a(xi—lJer N} =103 (2.6)
in each subinterval [x; ;,X;].
More precisely, denoting f, , = f{x;;,,S(X;1,4) S[ou(X 1,,)]}, 0<p <1, and
¢ =1-c;, we can write (2.6) as follows:
cf[30c}? S + (1 +2c| -15c?)S® — (¢} —33c/?)S?]
=¢/?[30c} {9 — (1+2c; —15¢%)SH —(c; —3¢2)S? 2.7)
+ thH:j , 1 =113,
Substituting S = hf;, S& =hf,_, into (2.7) and dividing by 30c?c’?, we get the
equivalent recurrence formulae:

S;=AS;;+hBf ,
— (2.8)
S® =hf, ,i=11N
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1 5(c,c, +¢;C;)—2

where A=A'D-= GOC}C,Z , (2.9)
0 _GC
C1C2
L 11 TH15c2-2¢,-1 1 o s -2-1
5| 12 30c 30c; 30c/c;? 30c;? (2.10)
; 11 15¢; - 2¢, -1 0 1 15c)? —2¢, 1|
12 30c; | 30c? 30c2c,? 30c,?
11Tt 1 L__1
Fi_| 1230 o-| 12 30c
o P A I P T
-~ 12 30 12 30c,
. (g0 g@T _ T
Si=GnsT) L =0 o)

It is easy to observe that initial condition (2.1b) becomes
S[O('(Xi—lJer )] = g[a(xi—hcj )] ' O(‘(Xi—l+cj ) < a,
and if oc(xi_1+cj ) €% 4, X% 1, ki, then S[OL(XFMJ- )] can be calculated from (2.3):

(2.11a)

ST0(X 1.0, 1= G, [(BCE e, +3Cs 0 +DS
@0, + Cure )8 + (BCEa, )8
+C e, (607 e, +3C)cse, +DS”
~ (4800, +Ciene I8 + (G0 )81, (=103,

k—l+Cj

(2.11b)

a(xi—1+cj ) — X4 ,
Where é/k—lJer = h a‘nd é/k—l+Cj = 1 - é/k—l+Cj .
<

Since O!(Xi_mj)—XH <hc;, let a(xi—1+cj)_xk—l =rhc;, (where 0<r<1), then

rhce, ’

Ci—1+cj = _h = I’Cjand é’k_le :1—er.

If 0<c, <c, <1, then A ' is nonsingular because | A|= (€, —C,)
30(C1 _1)(C2 _1)

Theorem 1: If f e C°([0,b]x R xR) satisfies Lipschitz condition, and if

h<1/RL (2.12)
then there exists a unique spline approximation solution of (2.1) given by (2.8) for

all c,, c, satisfying (2.2) .
Proof. It is sufficient to prove that S,=(S®, S ) can be uniquely determined

for arbitrary given S, ;.
Let S;,,S,, € R?, then using || .||, from (2.8), we have
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S,,=AS,,+hBf ands ,=AS  +hBf
Thus S, and SI , can be written in the form
=Q,, (s s.hand S, =Q, (517,53 h)
Applying |||, . Llpschltz condition and using Matﬁematlca, we get
1Q,,-Q,, =l (AS,, +hBf )~(AS,,+hBf )|

1
S{l— |[325r° —630r* + (252 + 57(C, +C,) —55C,C,)r° —
58+ 57(C, +C,) —55¢,C, ]| hL, | 89 —s9 | +
1
+——|[195r® —504r* + (252 +57(C, +C,) —55C,C, )r° —

120
_ 2 _ <@
58+57(C, +C,)—55¢,C,] | hL, | s;% —s;5 [}

< RhL{| S(O) (0) |+| 5(2) (2) |}
where
L =max(L,, L,), R=max(Ri, R2),

R, = 1[325r° —630r* + (252+57(c, +C,) —55¢,C, )r°

—58+57(C, +C,) —55C,C,]|
R, = 25| [195r® —504r* + (252 +57(C, +C,) —55C,C,)r°
—58+57(C, +C,) —55C,C, ]|
Thus, the function Q defines a contraction mapping if RhL <1 which satisfies

(2.12). Hence there exists a unique S, that satisfies S; =Q_(s{”,s{”,h)

which may be found by iteration,
$7"=Q (8/.h), p=0,1.2,...

The proof of the theorem1 is now complete.

3. Error Analysis and order of convergence

In this section we consider the convergence of the methods (2.4), (2.6) with
initial condition (2.11a). To find a numerical approximation S(x) to the exact solution y, we
define S(x)=g(x) for x<a. The spline methods produce function values S(x.)as

approximation to y(x;) . The unknown value y(a(x)) may be replaced by S(a(x)) .

Theorem 2: The methods (2.4), (2.6), (2.11a) are stable iff.
¢, +¢, 21 (3.1)
Proof. According to the definition of stability (definition 8.8 in [6]) we have to
check the uniform boundedness of { n}Where A is the matrix (2.9). Since |a;; <1,
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2
(i,j=1,2), n>0, then || A" |<k, k =max > | & |. On the other hand, A has two different
<24 "

“C Thus, the methods are stable iff |4 |<1, i=1,2,

eigenvalues 4, =1 and A, =—
lCZ

implies that c;c, <c,c,which is equivalent to (3.1).
Theorem 3: Let f € C°([a,b]xRxR), then the methods (2.4),(2.6),(2.11) are
consistent and are of order six iff.
58-57¢, -57¢c, +55¢,c, =0 (3.2)
Moreover, if f e C°([a,b]x RxR), then in the remaining cases the methods are
consistent and are of order five.
Proof. Let O(‘(Xi—hcj ) € [X.1, %], then we have the discretization error
Flia s Pi(Xia) s Pe(Xiq)]
gi _ |: 2y(;(|) :| _ A|: 2y(i(i—l) :| _ hB f [Xi—1+(‘,l’ pi (Xi—1+(‘,l)1 pk (Xk—l+cl )]
h y (Xi) h y (Xi—l) f[xi—l+02 ' pi (Xi—1+c2 )1 pk (Xk—l+C2 )] '
fIxi o pi(x) . p(x)]
i=11N, k<i,
where
p; (x) =c?[(6c* +3c+D)y(x,) + (B¢ ” +C)y (X )h+ 5y (X 1)h’]
+c°[(6¢' *+3c+1) y(x;) — (3¢ 2 +¢) Y (X )h + 2 ¢ y"(x, )h?]
P (x) = S[a(x)] = C°[(66% +3¢ +DS) +(3C* +£ S, +(36°)S{]
+C°[(6C7 +30 +1)S0 — (-3 +¢ )S® +(3¢2)SP], j=11)3

c =05(X ) — X

“and &' =1-¢ .
is the quintic Hermite interpolation polynomial which interpolates vy,y’,y" at
X=X_and x=x;, i=1(1)N.
Since
|pi (x) - Y(X)| <Lh® xe[x,,x],i=1(1)N
It follows that
d, =d, +o(h"), i=L(N,

where
y'(Xi4)
1 { y(x) }_ A{ y04) }_hB Y (X 11,)
a h2y"(x,) h7y"(x, ;) y'(xi_mz)
y'(%;)

Now using Taylor’s expansion

Y(9) = 0 (%) +%f YO (x)c® +O(h'), x [ 2.1, yC[0.b],
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k

5
h
where ,(0 = >y (6,)c"
k=0 A=

and observing that the methods are exact for polynomials of degree<5 (that means
for

y = g;we have d:gi =0) we deduce, according to lemma 8.11(cf.(8.16)) in [6],
that the methods are thus consistent and are of order at least five for all ¢, +c, >1.
Moreover, to get the statement in the exceptional cases in Table(1) we have to check

1 0 0

~ 1 11| 9 5
Ed (x) = -A —EB C15 fOMx)=0

0 0 1 5 C,

a 0 1

Using the form (2.10) of B , we get
6—10 (58—57c, - 57c, +55¢,C, )

0

But if we let 58-57c, —57c, +55¢c,c, =0, we get values listed in Table(l). This
completes the proof.

Table(1): Some cases that make the methods of order six
c;=0.51 €2=0.999309 ¢;=0.70 c,=0.978378

€1=0.55 €2=0.996262 €1=0.75 c2=0.968254
€1=0.60 c2=0.991667 €1=0.80 €2=0.953846
€1=0.65 c2=0.985882 €1=0.89 c2=0.903106

Theorem 4: Let f e C°([a,b]x Rx R) be Lipschitz continuous. Then the spline
approximation S(x) given by (2.4), (2.6),(2.11) converges to the solution y(x) of (2.1) as
h — 0 whenever (3.2) is fulfilled and

limh IS =y (x,), j=0@3
Furthermore, the convergence order is six, i.e., we have

YOX) =8P LAY, k=01, (3.32)

| y<2>(xi)—hizsi<2> I<L,h*, i=11)N (3.3b)
whenever the initial values (2.4) satisfy (3.3a)and (3.3b) (with i=0). In addition for
X # X;, the following global error estimates hold true:
v () -8% (9] < L.h®*, k=05, x[ab]. (3.4)
Proof . Using Lipschitz condition, we have
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|y () = S"(x) = T, y (), ylou(x)1 = F{x;, S(%;), S[a(x; )1}
< U] y(x) =S(x;) [+ ylou(x; )] = S[e(x; )1 [}
< L{L,h® +L,h®}=L,h°, o(x;) €[a,b]
where L1=2L Lo.

Remark 1: Relations (3.4) follow from (3.3a) and (3.3b) in a straightforward
manner using the quintic Hermite spline interpolate of y(x).

4. Stability analysis

Let us consider the following linear delay differential equation

y'(X)=2y(x)+q y(x—1) (4.1)

as stability test equation, where A, q € C arbitrary, the delay t is positive constant.

Definitionl A numerical method, applied to (4.1) is said to be P-stable if under
the condition Re(A)<—|q]|, the numerical solution s(x;) >0asx; —»ocofor all h
satisfying mh =t,m e N. A region of P-stability is the set all points (hx, hq) for which the
method is P-stable.

Applying the methods to (4.1)

$'(Xic1ie;) = AS(Xisue; ) + A4S Kipnaug; ), J=1(1)3, i=1(L)N, m<i, (4.2)

where t=mh, S(x;_, e ) =S(X
we get from (2.3)- (2.5),(2.11).

i l+C mh)and XI m- 1+C e[Xl m l’XI m]

[c2(30c?) - zc3(6c? +3c) +1)]S
+[c?@+2c| -15¢?) + zc3 (3¢ +¢})]S®
+[ct3e? —cp) - zci (G e?)]s?
+[c"?(-30c?) - z¢?(6c? +3c; +1)]S
+[c"?@+2c; -15¢2) - zc!*(3c? +¢;)]SY
+[c?(c; -3¢ - zeP(GeD)]s? =

ved[(6cy? +3c) +1)5% — (3¢ +¢))SY, + (A ¢S,

+vei[ee? +3c; +)50, + (32 +¢,)59,, +(3e2)S2,, (4.33)
j=12

S\ =28 +vs{},, (4.30)

S =281 +vs% ;. (4.3c)

where z=2Ah,v=qgh.
Or in matrix notation, (4.3a)-(4.3c) will be

A18 +AZS,1—BS,m+BSIml (4.4)
where A = (ak’j) A, = (ak‘j), B, = (bkyj)and B, = (bf'j) are defined by
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a,, =30cic;” —zc; (6c,? +3c, +1),
a, , =Cf(1+2c; —15¢,%) + z ¢S (3¢ +¢y),
oty =Gl ~ci)-bzeiel

a;, =-30cic,’ —zc2(6c; +3c, +1),
ag, =¢;°(1+2c, —15c;)—z¢;*(3c; +¢,),
ags =¢(c, —300) - 20,

aé,l = aiil =-Z, a;,z = a?iz =1, aé,s = aa?,s =0,

by, =vc;(6c? +3c, +1), b, =-vci(3c;” +¢y),
by 5 = %vcfcﬁ, bf, =vci(6cf +¢, +1), b, =vei(3cg +¢,),
b?, =%velc?, by, =bi =1, b, =b, =0,
fork=1,2andS, =(5©,s®,s®)", S, =(59,8%,8)7
S_i—m = (Si(f)r)n | Si(—lzn ' Si(—zr)n)T ' S_i—m—l = (Si(—or)n—U Si(flinfli Si(—zr)n—l)T
And hence we get
W(z,v)M, =G(z,v)M , (4.5)

where Mi = (§i’§i—m)T ) Mi—l = (S_i—l’ S_i—m—l)T )

W(zv)=[A|-B], G(zv)=[A,|-B,].
Thus by definition, z=Ah, v=ghbelongs to the region of P-stability of the

methods. It is clear that (z,v) Spif the eigenvalues u;(z,v), j =1(1)3 of the generalized
eigenvalue problem

uW (z,v).x=G(z,v).x, x#0 (4.6)
lie inside to the unit disc, i.e. if
I (z,v) <1, j =1(1)3. (4.7)

Now, let det[u(z,v) —G(z,v)] = 0be the characteristic equation of (4.6).

Numerical experiments indicate that (4.7) is satisfied for various values c,, c,
listed in Table(2). In these cases the methods are P-stable, where the P-stability
regions Spwere obtained numerically by determining {(z,v), |v|<—Re(z) } according to
det[e"’iW(z,v) —G(z,v)]=0(cf.[7], Ch.2). On the other hand, the methods are P-stable for
all 0.8028<c, <c, <1. See some regions of P-Stability in the Fig.(1) for c,=0.98, and
different c;.

Table(2): Some P-stability intervals for the methods

0.55<c¢, 0.978355<c,<1
0.60<c, 0.953197<c,<1
0.65<c, 0.924084<c,<1
0.70<¢, 0.890401<c, <1
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0.75<¢,; 0.851299<¢,<1
0.80<c¢,; 0.805586<c,<1
0.8025< ¢, 0.803099<¢c,<1
0.8028<c; 0.802800<c,<1
€=02 =04 C=06 C;=0.8
| / / / o
Re(z)

Fig.(1): Some regions of P-stability for ¢,=0.98 and
different c,.

5-Numerical examples

In this section we give the numerical examples(1-5) to demonstrate the reliability,
precision of the methods as compared to spectral method (SPC) [14], routine SPL [13]
with N linear spline elements and routine HRKF4 [16]. The HRKF4 method is an adaptive
fourth-order Runge-Kutta method with a fifth-order Hermite interpolation of the delayed
variables. Here, & indicates the absolute error norm in Tables (4-6). The examples were
chosen because they exhibited difficulties characteristic of the delay-differential equations:
a combination of stiffness and delay, and the nonsmooth or highly oscillatory character of
the initial function. All computations are made with the computer of Turbo PASCAL 7.0
in double precision.

Example 1. The Ex.(1) is a single delay equation with a stiffness parameter (cf. [14])
' 3 .
Y'(0) = Ay(©) +y(t-7) - Asin(),

y(©) =e”® +5sin(o), ee[-%“,O],

where A= p—e P2,

The solution is given by y(t) =e®" +sin(t).

For large negative values of p, the solution consists of a short transient of exponential
decay, followed by a periodic sinusoidal oscillation. The parameter p also enters the delay
equation exponentially; therefore, its effect on the stiffness of the equation is dramatic. In
Table(4) we computed the absolute errors at different time levels, for p values of (-0.1, -
1.0, -2.0).

173



Jgana il Alialds ¥ alae Jad dumseat Jalss EMNG Laihall @hhl (e Caa

Example 2. Here we consider the following system of four homogeneous delay-
differential equations (cf. [14]):

yi(t) =y, (b)),
Yo (t) =y, (1),
y3(t) =-2ny,(t)+ 1+ nz)(_l)n y,(t—7),

yi(t)=-2ny, (t)+ 1+ n*)(-1)" Y, (t—7).
The initial functions and solutions are given by

y, (t) =sin(t) cos(nt),
Yy, (t) = cos(t)sin(nt),
y3 (t) = y:[ (t)’
Y, () =y (1), te[-m,00).
Fig.(2) shows both the approximate solution by the proposed method and the

exact solution for h=7/100 and n=6. In Table(5) we compare the absolute errors of the
method and other methods.

75 15
5.0 1.0
25 0.5
y3 0.0 yl 0.0
2.5 0.5
-5.0 -1.0

'75 T T T T '1.5 T T T T

0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0
t t
Fig.(2). Both the approximate solution and exact solution Appr. 00000
of example 2, for n=6, ¢,=0.25, ¢,=0.75. Exact -

Example 3 [14, Ex.(3)]. We consider a degenerate system where
(1,—2,-1)7 y(t) =0 for t > 2and all initial data (n,¢) € R" x L*:

0 2 0 0 0O
y't)=(0 0 -1lyt)+|1 0 O|y(t-1).
0 0 O 0 20

The solution is then given by
(l+2t-t*,1-t,1)7, te[01],
y{t)=4(2,0,-2+4t-t*)", te[12],
(2,0, 2)7, t>2.
We note that the initial function is discontinuous at t=0 and the solution
components, y, and ys, have a jump discontinuity in the derivative at t=1. Table(6) clearly
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shows the high accuracy of the methods. Fig.(3) shows both the approximate solution and
the exact solution for h=0.1.

Appr. 00000
Exact -

Fig.( 3). Both the approximate solution and the exact
solution of example 3, for ¢;=0.25, ¢,=0.75.

Example 4 [11, 15]: Artificial problem
, 1
y'(t) =1- y[exp(1- f)] ,  te[0.1,10]

d(t) = In(t), t [0,0.1]
The exact solution is y(t)=In(t). Note the vanishing delay function as t — 1. Table(3)
shows our numerical results.

Example 5 [1]: Neutral delay differential equation.
') = 00s) -2 YO+ Yt -m) -y (t-2), 120,

y(t)=1 —z<t<0
The exact solution for this problem with the given initial function is:

y(t) =1—2cos(t) + Zcos(gt), for t €[0, 7],

Table(7) shows comparisons between the proposed method and cubic
approximations and deficient spline approximations of order 3.

Table(3): Numerical results for Ex.( 4), with h=0.02, ¢,=0.25, ¢,=0.75.

t Absolute error of the method
0.2 2.1E-13

1 4.7E-13

2 7.4E-13

4 9.5E-13

6 1.0E-12

8 2.1E-12

10 2.2E-12
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Table(4): Test results for Ex.(1), with h =1/40, ¢,=0.25, ¢,=0.75

P | Time | Sho[l4] | SEI[4] | Sueeltd] | et
3n/4 2.6E-6 6.2E-6 2.1E-4 6.0E-12
3n/2 7.9E-8 1.2E-5 4.7E-5 9.3E-12

-0.1 | 9n/4 1.0E-5 2.5E-5 1.7E-4 1.8E-11
3n 3.1E-7 3.1E-5 1.3E-4 2.9E-11
157/4 8.4E-7 2.0E-5 4.5E-5 44E-11

po| Time | 85 | S| S | oy
3n/4 8.3E-8 2.5E-7 3.1E-7 9.8E-15
3n/2 7.6E-7 6.6E-11 2.1E-7 2.2E-14

-1.0 | 9n/4 1.5E-8 2.9E-07 1.7E-7 3.6E-14
3n 4.2E-7 4.1E-07 9.8E-8 7.1E-14
157/4 2.0E-7 2.9E-07 9.8E-7 1.5E-13

P Time | 8% | SF | Swr | petnod
3n/4 1.3E-10 1.1E-8 1.5E-7 1.5E-15
3n/2 1.1E-9 2.2E-9 1.6E-7 3.3E-15

-20 | 9n/4 2.1E-10 2.1E-9 1.6E-7 5.2E-15
3n 1.1E-09 3.9E-9 6.4E-9 7.5E-15
157/4 2.1E-10 2.6E-9 Failed 9.7E-15

Table(5): Test results for Ex.(2), with h = t/100, ¢,=0.25, ¢,=0.75.

. Present

n Tlme 8gPC [14] Sgggo [14] 8HRF [14] MethOd
/2 2.1E-4 4, 7E-6 6.8E-6 3.1E-13

1 o 5.7E-7 9.6E-6 1.2E-5 3.8E-13
3n/2 2.0E-4 9.0E-6 1.2E-5 5.1E-13

27 2.8E-6 1.0E-5 1.6E-5 6.3E-13

. Present

n Time Sspe Sepr. Opirr Method
/2 2.8E-4 2.1E-7 7.6E-8 7.3E-12

5 o 7.5E-7 5.0E-7 5.8E-7 9.1E-12
3n/2 3.0E-4 1.2E-5 1.3E-5 3.8E-11

27 5.1E-6 2.7E-4 3.1E-4 1.4E-10

. Present

n Time Sspe SspL Opire Method
/2 3.6E-4 3.3E-6 6.6E-11 6.7E-11

6 i 1.9E-9 7.7E-4 1.5E-08 5.4E-10
3n/2 4.0E-4 1.8E-1 3.5E-06 2.0E-08

27 1.0E-4 41E-2 8.1E-04 1.0E-06
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Table(6): Test results for Ex.(3), with h=0.1, ¢;=0.25, ¢,=0.75.

Time | 850141 | L0141 | Sueelld] | o
1.0 2.2E-16 0.0 7.5E-16 3.0E-17
2.0 1.0E-15 0.0 4 5E-12 1.1E-16
3.0 2.1E-15 0.0 1.1E-11 1.3E-16

Table(7): Absolute errors for the solution of Ex.(5).

deficient spline approx.[1]
of order 3, for h=22/1400

Cubic Approx.
method[1]
for h=22/1400

Present method
for h=x/50

3.958656358E-04

2.0161678549E-07

6.7131677348E-11

1.5321755618E-03

1.3896369637E-06

2.7210381301E-10

3.3129796484E-03

3.2549742173E-06

6.1921654869E-10

5.6547611457E-03

5.7729739638E-06

1.1100225014E-09

8.4848242204E-03

9.2825812317E-06

2.5255069195E-09

nlbh|WIN|FL,|O

1.1739892165E-02

1.3213615603E-05

3.4499927112E-09

6 Conclusions

e The main contribution of this paper is the development and analysis of a class of
spline collocation methods for solving delay-differential equations. The developed
methods depend on CZ%spline collocation schemes determined by quintic Hermite
interpolation with two parameters c,,c, € (0,1), ¢, #¢,.

e The methods possess convergence rate of order six when 58-57(c, +c,)+55¢c,c, =0
(see, Table(1)), in the remaining cases the order is five. Moreover, the methods are P-stable
for 0.8028 <c, < ¢, <1, and increase regions of P-stability when c, =0.98, ¢, —>1 (see,
Fig. (2)).

e Numerical results illustrating the behavior of the methods when faced with some
difficult problems are presented and the numerical results are compared to those obtained
by other methods (see, Examples 1-4).

e The comparisons of our numerical results with other methods show that our results
are more accurate (see, Tables 4-7).

e Our methods if applied to delay-differential equations are successful for solving
problems, which have oscillatory solutions; (see, Fig.(2), ex.(2)).

e Another advantage is that these methods attain the same order of accuracy for
delay-differential equations as they do for ordinary differential equations because spline
approximation is directly used to interpolate delay function.
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