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O ABSTRACT 0O

In this paper, we study KC-spaces; these are the spaces in which every compact
subset is closed. Then we introduce the concept of minimal KC-spaces and we study the
relation between minimal KC-spaces and minimal Hausdroff spaces. Finally, we introduce
a new concept of minimal LC-spaces. Most of the theorems which are valid for minimal
KC-spaces will also be valid for minimal LC-spaces.
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1. Introduction:

Let R be a topological property, X be a nonempty and let R (X) denote the set of all
topologies on X having the property R. R (X) is partially ordered by set inclusion. (X,1) is
minimal R (R-minimal) if t is minimal in R (X). In [1] there is a good survey on minimal
topologies and it stated there that every compact Hausdroff is minimal Hausdroff. In this
paper we show that compact KC-space is minimal KC-space.

In this section we recall the basic facts concerning KC-spaces.

Definition 1.1 [2]:
Let (X,t) be a topological space, we say that (X,t ) is a KC- space if every compact
subset of is a closed in X.

Remarks and Examples 1.2:
1. Every Hausdroff space is a KC-space for example (R, tu) is a KC-space (where tu is the
usual topology on R).
2. (R, tcc) is a KC-space but not a Hausdroff space (where tcc is the co-countable
topology on R)
3. Every KC-space is a T1-space. So we have the following diagram

T2-space — KC-spaces — T1-space
4. (R, tc) is a T1-space which is not a KC-space (where tc is the co-finite topology on R)
5. Let X be a finite set then X is a KC-space iff X is a T1-space.
6. Every continuous function from a compact space into a KC-space is a closed function.

Proposition 1.3:

Let X be a locally compact space then X is a KC-space iff X is a T2-space.
Proof:

Suppose that X is a KC-space, since X is a locally compact, then every neighborhood
of x € X contains a compact neighborhood of x (some authors define locally compact in a
different way).Hence the family of compact neighborhood of x in X will be a local base at
X € X, but X is a KC-space. Thus the family of closed neighborhood of x € X will be a
local at x € X. Therefore X is a regular, but X is a T1-space then X is a T3-space which
implies that X is a T2-space. The converse is clear.[]

2. Properties of KC-spaces:

In this section we state and prove several properties of KC-spaces.

Remark 2.1: The continuous image of KC-space is not necessarily a KC-space as shown
by the following example: consider IR: (R, tu) — (R, ti), where IR is the identity function
on R. Now (R, tu) is a KC-space but (R, i) is not KC-space, where i is the indiscrete
topology on R.

Proposition 2.2: If f: X — Y is a continuous injective function from X into a KC-space Y
then X is KC-space, too.
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Proof: Let W be any compact subset of X then f (W) is compact subset in Y. Since Y is
KC-space, f (W) is closed subset of Y, see [3]. Therefore f (f (W) ) = W is closed subset of
X, because f is contindious injective function. Thus X is KC-space.[]

Proposition 2.3: The property of being KC-space is a topological property.

Proof: Let (X,tx) be a KC-space, f: (X,tx) — (Y, 1Y) be a homeomorphism and let W be
any compact subset of Y, then f (W) is compact in X, but X is a KC-space, saf (W) is
closed in X then f(f (w)) =W is closed in Y. Therefore Y is a KC-space.[]

Proposition 2.4: The property of being KC-space is a hereditary property.

Proof: Let (X,tx) be a KC-space, (Y, 1Y) be a subspace of X, and let A < Y be any
compact subset in Y, then A is compact in X, but X is a KC-space. Therefore A is closed in
X. ThusAnY =Aisclosed in Y; hence Y is a KC-space.[]

3. Minimal KC-Spaces:

In this section, we introduce the concept of minimal KC-space
First we recall the definition of minimal T2-space.

Definition 3.1 [4]: Let (X,t) be a T2-space, we say that (X,t) is a minimal T2-space
(minimal Hausdroff space) iff t* < t implies (X,t*) is not a T2-space, (we will use MH to
denote minimal Hausdroff space).

Definition 3.2: Let (X,t) be a KC-space, we say that (X,t) is a minimal KC-space
iff t* < t implies (X,t*) is not a KC-space, (we will use MKC to denote minimal KC-
space).

Theorem 3.3: Every compact KC-space is a MKC.

Proof: Let (X,t) be a compact KC-space. Suppose X is not MKQC i.e. there is a topology
* < 1 on X such that (X,t*) is KC-space. Let Ix : (X,t) = (X,t*) be the identity
function on X. Ix is a continuous, bijective and closed function, hence Ix is a
homeomorphism implies that t* = t which is a contradiction so (X,t) is MKC.[]

Examples 3.4:

1. Consider I =10, 1] in (R, tu). I'is a T2-space so I is a KC-space. Since I is a compact
space then, by theorem 3.3, T'is a MKC.

2. Let X be a nonempty finite set then (X,zd) is MKC (where td discrete topology on X).

Remark 3.5: The continuous image of MKC is not necessarily MKC, as shown by the
following example, let X be a nonempty finite set and let Ix : (X,td) — (X,ti) be the
identity function on X. (X,td) is MKC but (X,zi) is not MKC.

Proposition 3.6: The property of being MKC is a topological property.

Proof: Let (X,tx) be a MKC-space, f: (X,7x) — (Y, 1Y) be a homeomorphism. Notice that
(Y, 1Y) is a KC-space and suppose that (Y, tY) is not a MKC, then there exists a topology
™Y < 1Y such that (Y, t*Y) is a KC-space. Define t1 = {f (V): Ve 1*Y}, tlis a
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topology on X and t1 < tx and (X, t1) is a KC-space which is a contradiction with X is a
MKC. Hence (Y, tY) isa MKC.[]

Theorem 3.7: Let (X,tx) be a compact KC-space, and (Y, 1Y) be a subspace of X, then Y
is compact iff Y is a closed set in X.

Proof: Suppose Y is compact, since X is KC-space then Y is closed. Conversely, suppose
Y isaclosed in X then Y is compact because X is compact.[]

Corollary 3.8: Let (X,tx) be a compact KC-space, then every closed subspace of X is
MKC.

Proposition 3.9: Every locally compact MKC is MH.

Proof: Let (X,tx) be a locally compact MKC-space, so X is a locally compact KC-space,
hence X is a T2-space. Suppose X is not a MH-space, so there exists a topology t* on X,
™ <t and (X,t*) is a T2-space implies that (X,t*) is a KC-space which is a contradiction.
Therefore (X,t) is MH.[]

Proposition 3.10: Suppose X1 x X2 is a compact KC-space, then each of X1, X2 is a
MKC-space.
Proof: Since X1 x X2 is a compact then each of X1, X2 is a compact, too. Let x*2 be a
fixed element in X2, X1 x {x*2} is a subspace of X1 x X2, therefore X1 x {x*2} is a KC-
space. But X1 is a homeomorphic to X1 x {x*2} implies that X1 is a KC-space. Thus X1
is a compact KC-space, by using theorem 3.3 X1 is MKC-space. Similarly we can show
that X2 is a MKC-space. [

We can generalize above result to finite product X1 x X2 x...x Xn and to arbitrary
products as follows:

Theorem 3.11: Let 3={Xa.: a € Q} be any family of topological spaces. If X=[] Xa is a
compact KC-space, then each Xa is a MKC-space for each a. € Q.
Proof: Let a* € Q we will show that Xa* is MKC-space. Since X=[] Xa is a compact
and the projection Pa: X— Xa is continuous function and the continuous image of the
compact is compact, then Xa is compact, in particular Xo*is compact. Now, define Y=[]
Yo where

Xaot if a=a’,

Ya=

*

X' if ool

Where x*a is a fixed point in Xa. Yo is a subspace of X so Y is a KC-space. Since
Xo* is homeomorphic to Y then Xa* is a KC-space and by using theorem 3.3 Xa* is
MKC-space. Because of a* is arbitrary, therefore, Xa. is a MKC-space.[

4. Minimal LC-Spaces:

In this section, we introduce a new concept, namely minimal LC-space. First, we
recall a few definitions and facts concerning LC-space.
Definition 4.1 [2]: Let (X,t) be a topological space we say that X is LC-space if every
Lindel6f subspace of X is closed in X.
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Remarks and Examples 4.2:

1. Every LC-space is a KC-space, hence every LC-space is a T1-space, i.e.

LC

J

T2 > KC —» T1

2. Every T2-p-space is LC-space (where p-space is the space in which countable
intersection of open sets is open set.)

Proposition 4.3: Every locally compact LC-space is a T2-space.
Proof: Let X be a locally compact LC-space, then X is a locally compact KC-space. Hence
X is a T2-space. [

Remark 4.4: The continuous image of LC-space is not necessarily LC-space as shown by
the following example. Consider IR: (R, td) — (R, 7i) is the identity function on R, notice
that (R, td) is a LC-space but (R, i) is not LC-space.

Proposition 4.5: If f: X — Y is a continuous injective function from X into a LC-space Y
then X is LC-space, too.

Proof: Let W be any Lindelof subset of X then f (W) is Lindel6f subset in Y. Since Y is
LC-space, f (W) is closed subset of Y, see [4]. Therefore f (f(W) ) = W is closed subset of
X, because f is contin_lious injective function. Thus X is LC-space. [

Proposition 4.6: The property of being LC-space is a topological property.

Proof: Let (X,tx) be a LC-space, f: (X,tx) — (Y, 1Y) be a homeomorphism and let Ac Y
be a Lindel6f subset. Since f *(A) is a Lindelf subset of X and X is LC-space, then f * (A)
is closed in X. Thus, f (f ™ (A)) = A is closed in Y, therefore, Y is LC-space. [

Proposition 4.7: The property of being LC-space is a hereditary property.
Proof: Let (X,tx) be a LC-space, (Y, tY) be a subspace of X and let A < Y be a Lindel6f
subset of Y. Therefore, A is a Lindelof subset of X, implies that A is closed in X because X
isa LC-space. ButA=AnNnYisclosedin Y ie. Y isaLC-space. [l

Now, we introduce the definition of minimal LC-space.

Definition 4.8: Let (X,t) be a LC-space we say that X is a minimal LC-space (MLC)
iff t* < 1 implies (X,t*) is not LC-space.

Theorem 4.9: Every Lindel6f LC-space isa MLC.

Proof: Let (X,t) be a Lindelof LC-space and suppose (X,t) is not MLC, then there is a
topology t* on X such that t* < tand (X,t*) is LC-space. Let Ix : (X,t) —» (X,t*) be the
identity function on X. 1Ix is a continuous, bijective and closed function then Ix is a
homeomorphism which implies that t* = t, but this is a contradiction, so (X,t) is MLC. []

Example 4.10: Let X be a countable set, then (X, td) is a MLC.
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Remark 4.11: The continuous image of MLC is not necessarily MLC, as shown by the
following example: Let X a countable set and let Ix : (X,td) — (X,zi) be the identity
function on X. (X,td) is MLC but (X,zi) is not MLC.

Theorem 4.12: The property of being MLC-space is a topological property.
Proof: Let (X,tx) be a MLC-space, f: (X,tx) — (Y, tY) be a homeomorphism. Notice that
(Y, Y) is LC-space and suppose it is not MLC then there exists a topology t*Y on Y such
that =Y < 1Y and (Y, tY) is LC-space. Define t*x = {f (A): A et*Y}, t*x is a topology
on X, t*x < wx and (X,t*x) is a LC-space which is a contradiction. Hence (Y,tY) is a
MLC. [

-1
Theorem 4.13: Let (X,tx) be a Lindel6f LC-space and let (Y, tY) be a subspace of X then
(Y, tY) is a Lindelof iff Y is closed in X.
Proof: Suppose (Y, 1Y) is a Lindelof space, but X is LC-space therefore Y is closed in X.
Conversely, suppose (Y, tY) is closed in X, but X is Lindel6f space, then Y is also
Lindel6f space. [

Corollary 4.14: Let (X,tx) be a Lindel6f LC-space and let (Y, 1Y) be a closed
subspace of X then (Y, 1Y) isa MLC.

Theorem 4.15: Let X1 x X2 be a Lindelof LC-space, then each of X1, X2 is a MLC-space.
Proof: Let x*2 be any fixed element in X2.Then X1 x {x*2} is a subspace of X1 x X2, by
proposition 4.7, X1 x {x*2} is a LC-space. But X1 x {x*2} is homeomorphic to X1, by
proposition 4.5, X1is LC-space, too. Therefore, by proposition 4.9, X1 is MLC. [J

The above theorem can be generalized to finite product and arbitrary product as
follows.

Theorem 4.16: Let 3={Xo: a € Q} be any family of topological spaces. If X=[] Xa is a
Lindel6f LC-space then each Xais  MLC-space for each a € Q.

Proof: Let a* € Q we will show that Xa* is MLC-space. Since X= [ Xa is a Lindel6f
and the projection Pa: X— Xa is continuous function and the continuous image of the
Lindelof is Lindel6f, then Xa is Lindel6f, in particular Xa*is Lindel6f. Now, define Y=[]
Yo where

Xa* if o=a’,

Ya=

*

X' if oo’

Where x*a is a fixed point in Xa. Yo is a subspace of X so Y is a LC-space. Since
Xo* is homeomorphic to Y then Xa* is a LC-space and by using theorem 4.9 Xao* is
MLC-space. Because of o* is an arbitrary, therefore, Xa is a MLC-space.[]

153



Sl L) LC e Liady daal) KC e Lia

5. Open problems:

In this section we are going to establish some open problems arise, concerning the
minimal KC-space and minimal LC-space,

1. Under what conditions the continuous image of minimal KC-space is minimal
KC-space, too.

2. Under what conditions the continuous inverse image of minimal KC-space is
minimal KC-space, too.

3. Under what conditions the continuous image of minimal LC-space is minimal
LC-space, too.

4. Under what conditions the continuous inverse image of minimal LC-space is

minimal LC-space, too.
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