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O ABSTRACT 0O

The quadrupole moments of the deformed nuclei in the p-shell: ®Li, “Li, 8Li, °Be,
108 1B 2C and N are calculated as functions of the total spin | and the deformation
parameter b by assuming that these nuclei have axes of symmetry. Moreover, the
single-particle wave functions of a nucleon in a deformed non-axially symmetric nuclei
are used to calculate the matrix elements of the quadrupole moment operator.
Accordingly, the quadrupole moments of the deformed nuclei in the p-shell °Li, Li, Li,
‘Be, 1B, B, *2C, and *N are calculated as functions of the deformation parameter

the non-axiality parameter y, and the oscillator parameter hwg, which is obtained as
function of the mass number A.
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1. INTRODUCTION

The nuclear collective motion [1] is a topic of the nuclear structure theory which
has grown steadily both in the sophistication of its theory and in the range of data to
which it relates. The most central parameters of collective rotation are the moments of
inertia [2,3,4] and the quadrupole moments [5] of deformed nuclei. Consequently, the
investigations of the nuclear moments of inertia and the quadrupole moments are
sensitive checks for the validity of the nuclear structure theories.

The axially symmetric harmonic oscillator potential with the spin-orbit coupling
term and the term proportional to the square of the orbital-angular momentum quantum
number of the nucleon is often used as a model of the nuclear average field. Having the
nilsson’s considerations [6], the axially symmetric harmonic oscillator characterized
prolate shapes [7]. It is therefore of interest to extend the applicability of the asymmetric
model to calculate the energy eigenvalues and eigenfunctions for the possible regions of
deformation. Accordingly, the single-particle energy eigenfunctions of a nucleon in a
deformed nuclear field with no axis of symmetry are used to calculate the nuclear
quadrupole moment.

in the present paper we have calculated the quadrupole moments of the deformed
nuclei in the p-shell: ®li, “li, ®li, ®be, %, b, *c, and *n, by assuming that these nuclei
have axes of symmetry. Furthermore, we have used the single-particle wave functions of
the asymmetric rotor to calculate the quadrupole moments of the nuclei °li, 'li, 8Li, °Be,
108, B, *2C, and N as functions of the deformation parameter B, the non-axiality
parameter g, and the oscillator parameter th, which is obtained as function of the

mass number A, the number of protons Z and the number of neutrons N.

2. The Quadrupole Moment for The Axially Deformed
Nuclei

Assuming a charge distribution in accordance with the Thomas-Fermi statistical
model applied to the oscillator potential one obtains the intrinsic quadrupole moment, to
the second order in the deformation parameter 6 [6]

Q, =0.8ZeR%d(1 + %d) 2.1)

where Z is the number of protons and R is to be taken equal to the radius of charge of the
nucleus or Rz~ 1.2 A™® fm, where A is the mass number.

The relation between the measured quadrupole moment, denoted by Qg , and Qq is given
by [8]

. C3K2-1(1+))

T (1+1)(21+3) Rt (22)

where | is the spin-quantum number of the specified nuclear state and K is its component
along the body-fixed Z-axis. It turns out that the ground state spin of the nucleus is
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always lp = Q = K, where Q is the z-component of the total angular momentum J, except
when Q :%, in which case the ground state spin Iy is given as function of the
decoupling factor a, as given by Table-Ill of reference [6]. The decoupling factor a, is
determined from the expression of the rotational energy for odd-A nuclei, with Q :% , as

follows [8]

2

En = %u(l P +a(-D2(1+ %)], (2.3)

where A is the nuclear moment of inertia [3].
Another formula for the measured quadrupole moment, Qs, is given by Greiner and
Maruhn [5] as follows

_3KE-1(1+))
Q= Qg ¢t 24)

Where a is given in terms of the deformation parameter b as follows

4[5
a_7\Eb, (2.5)

and the intrinsic quadrupole moment Qq is given by

Q, = —2_7eR%p. (2.6)

J5p

3. THE SINGLE PARTICLE WAVE FUNCTIONS

For a quadrupole deformation, the equation for the surface of a deformed nucleus is
given by [8]

R=Ry[1+Aa,,Y,, i)l (3.1)

where Rq is the radius of the sphere having the same volume and Y, are the spherical
harmonic functions. If the body-centered frame was selected as the principal axes, we
have

1 .
a,, =a, , =—=bsing, a,, =a, , =0,a,, =bcosg,

o2
where B is the deformation parameter and g is the non-axiality parameter.

If we suppose that the density of the deformed nucleus can be ideally represented by
an ellipsoidal distribution, then it follows that the average potential should also be

240



ellipsoidal. This is most easily achieved by using the anisotropic oscillator as average
field. Adding a spin-orbit term and a term proportional to the square of the orbital-
angular momentum of the nucleon, to produce the experimental single-particle energy
levels, the Hamiltonian operator of a nucleon in a deformed non-axial nucleus is then
given by [7]

2
H-= —%NZ +%w§ r?+Cls +DI 2 -mw2bcosgr?Y,,(q, f)
2 .
—gmwébsmgrz(szz(q,f)+Y2]_2(q,f)) (3.2)

The first four terms in this Hamiltonian represent the spherical case while the first five
terms represent the axially-symmetric case. The frequencies w,, w, and w,of the

anisotropic oscillator are related to the frequency w, by [7]

5 2pk
w, =W,[1-,/—bcos(g-—)], k=123 3.3
« = Wol- ap (9 3 )] (3.3)
where 1 stands for x, 2 stands for y, and 3 stands for z.

The frequency w, is given in terms of the non-deformed frequency w; by [9]

_ oo A, 16 5T _3 /5
w, =W, (d) =w, (1 3d 27d) , d 5 4b.

The single-particle wave functions, which are the eigenfunctions of the Hamiltonian
operator H, can be obtained by diagonalizing the matrix of the Hamiltonian consisting of
the first five terms with respect to the basis functions which are the eigenfunctions of the
Hamiltonian consisting of the first four terms and then applying the stationary non-
degenerate perturbation method for the last term in equation (3.2), the perturbed term.

The single-particle wave functions are then written in the form [7]

=a

i

.=l

N,wp>j . (3.4)

The functions |N,Wp>,which represent the axially symmetric case, are expanded in

the form of linear combinations of wave functions, which represent the spherically
symmetric shape of the nucleus, as follows

Yiup =|N,WP) :.iCiMNp'N’I’L'S>‘ .

(3.5)

where C" are the expansion coefficients and W=L +S is the z-component of the
nucleon total angular momentum vector j and p = (-1)" defines the parity of the state.
The functions [NILS)are given by [2]
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N-1+2

26 e
— 5 (,-2 =
NILS)=a,f [ B et ()Y @ddes (39
[GC—— )]
2
where r:L,aO: h ,N=0123,...,7 and 1=N,N-2,..,00rl. The functions
a, mw,

1

1+=
L% (r*)are the Laguerre polynomials and C,s are the single—particle spin wave
2

functions. More details about the construction of the single—particle wave functions
Y. ,equations (3.4) and (3.5), can be found in reference [2].

4. The Quadrupole Moment for the Non-Axially Deformed
Nuclei

The intrinsic quadrupole moment of a nucleus consisting of Z protons is given by

Q=aqQ . (4.1)

1=
where the single—particle operator Q; is given by [5]

16p

2 _
Q =e ?by;\lwp| FY,0(a;,d,)dt (4.2)

Carrying out the integration in equation (4.2) with respect to the basis functions
INILS), equation (3.6), one then obtains

16p

Q =e ?<N¢, e|r[N, 1), (16, LE Y, 0|0, L) (4.3)

The matrix elements of the spherical harmonic operator Y, ; are given by [2]

. o 521 +1)21+1) el 2 1ol 2 19
(LY@ P 1L =( 1)\/ o 0 0 0ib-L 0 LD (4.9)

where the last two terms in (4.4) are 3j-symbols of the rotational group Rs. The matrix
elements of the operator r? are given by [2]

(NS 1PN, 1E) = (N +g)dN,N + [nt(nt+ |¢+%)0|N¢N_2 + |nt(nt+ I¢+%)dN¢N+2,
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(NG T¢[r?|N, 1 -2) = 2\/(n¢+1)(n¢+ ”+%)chN +/nt(nt = 1)dy

+\/(n¢+ I +%)(n¢+ It - %)dN,N+2

(NG T¢[r?|N, 16+ 2) = 2\/(n¢+1)(n¢+ |¢+§)dmN +\/(n¢+ I¢+§)(n¢+ N"'g)dwm-z

+ A n¢(n¢ - 1)dN¢N+2

(4.5)

where N =2n+1.

Filling the single—particle wave functions (3.4) for a given nucleus in a definite state
and determining the state—expansion coefficients of equation (3.5) it is then possible to
calculate the quadrupole moment of the specified nucleus by calculating the necessary
matrix elements of equations (4.4) and (4.5).

5. RESULTS AND CONCLUSIONS

The adopted treatment makes it possible to calculate the electric quadrupole
moment for axially—symmetric as well as for non-axially
symmetric deformed nuclei. Since there are no definite evidences that one of the
considered p-shell deformed nuclei has not an axis of symmetry it is then better to
calculate the quadrupole moments of these nuclei by assuming that they have axes of

symmetry,g = 0°, and then repeat the calculations by assuming that these deformed

nuclei do not have such symmetry axes, g * 0°. Comparing the obtained results with the
corresponding experimental values it is, then, possible to know whether or not these
nuclei bosses axes of symmetry.

In Table-1 we present the calculated values of the electric quadrupole moments of the
nuclei °Li, "Li, ®Li, °Be, 1°B, !B, **C, and *N, according to formula (2.4) for the axially-
symmetric case and also formulas (2.4) and (4.1) for the non-axial case. In Table-1 we
present also the corresponding experimental values [10] and the value of the deformation
parameter b, and the total spin I. The values of the non-axiality parameter gand the

non-deformed oscillator parameter hwg , which are functions of the mass number A, the

number of protons Z and the number of neutrons N [9] are also given in Table-1

It is seen from Table-1 that the calculated values of the electric quadrupole moments
for the lithium nuclei °Li, ‘Li, and ®Li are in good agreement with the corresponding
experimental values for the case of the axially-symmetric shape, while the agreement
with the experimental values for the other nuclei, °Be, °B, B, B, *C, and N, is better
in the case of the non-axially symmetric shape.
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Table-1 Electric quadrupole moments of the nuclei °Li, 'Li, ®Li, °Be, °B,

MB, 12C, and N

Nucleus B IP Y th(MeV) Qs Qexp.
(barns) (barns) [10]

6 j 0.06 |1* 0 -0.00081 -.00083
010 |1+ 10° 9.594 -0.00059

TLj 0.17 3 0 -0.03992 -0.0408
0.18 3" 20° 11.796 -0.03978

2

8Lj 0.14 o+ 0 0.03121 0.0317
0.24 ot 20° 13.208 0.03100

°Be 0.26 3 0 0.03921 0.0530
0.19 3" 30° 12.561 0.05214

2

0p 0.38 3* 0 0.07403 0.08472
0.34 3¢ 30° 12.022 0.08286

upg 0.37 3 0 0.02762 0.04085
0.41 3- 30° 12.768 0.03892

2c 0.18 o+ 0 0.06403 0.0600
0.13 ot 30° 12.238 0.05921

“N 0.12 1* 0 0.01898 0.0193
0.11 1* 10° 12.251 0.01901
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