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1.Introduction:

Photoelectric cross — section :

The term cross-section is used as a quantitative measure of an interaction between an incident
particle and an atom.

The cross-sections per atom for a given process is defined through the probability, P= number

of interactions /number of incident particles.
P= Nts 1)

Where N the number of atoms per unit volume in the target and t is its thickness .

The number of interaction for a target containing Nt atoms per unit area perpendicular to an
incident beam of | particles is equal to INts .

Another unit of thickness is the mass absorption coefficient ( the product of the mass density D,
and the linear thickness t).

In this work we describe a calculation of the photoelectric cross-section using hydrogenic wave

functions .

For this calculation we use an equation that is famous in quantum mechanics and is known as
Fermi's Golden Rule[1] .

Fermi's Golden Rule provides us the probability per unit time for a transition to the final state f
from the initial state i between atom —orbits and is given by,

w=LoE)y Hy ) @

Where W is the transition rate and has dimension ( time) ™.

In this equation D(E) is the density of final states per unit energy.
Here, the three dimensional density of states is given by,
3
&2 V (g2moz -
D(E)=¢—5 -+ E2 (3)
e2p-geh” g
The most useful formula to calculate the probability of a transition comes from time-
dependent perturbation theory.
It’s the formula which is the starting point for many of the derivations of cross-sections.
Consider system with a Hamiltonian H given by,
H= H, + H¢ 4)
Where H_ is a time — independent operator and could be ,for example, the Hamiltonian which
describes hydrogenic atom while H¢may be a time — dependent perturbation.

VilHy) =gy *HYy e =[Hy] g

Where y is the complex conjugate of y , dt is a three dimensional volume element .

X- ray photoelectron spectroscopy (XPS) is an example of a process that involves one atomic
transition , the creation of an inner hole and an energetic photoelectron Fig.1.
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Fig.1:Schematic diagram of X-ray photoelectron spectroscopy

The relevant wave functions for the initial and final states are given by ,

_ 1

y'(r)_\/p_ae (6)
— 1 ikr

yf(r)_Ne (7)

where r =r/a ,a=a,/Z, a, - Boher —radius ,Z- atomic number.
The initial state y,describes a ground state hydrogenic wave function in an atom and the final
state Yy . is usual outgoing plane wave normalized to a volume V.

In this calculation we assume the energy of the incoming photon hw on the target is more
bigger than the binding energy E of the orbit- electron .

The transition probability can be calculated explicitly if the perturbation potential is
H'(z)=H'(2)e™" ‘=-ez&e™" 8)

Where € an applied electric field which acts on the particle in z direction.
From egs.(2-8) we get W. The cross- section s is defined

as the ratio between W and the flux F of the incident electromagnetic radiation (the number of
photons/area/time)[1].

s =W/F 9)
The measurements for the binding energy of electrons were performed with XPS- method. By

means of XPS-, a bound electron such as the K-shell electron promoted to a free state outside the
sample, see Fig.1 .

The kinetic energy of the photoelectron is well defined and sharp electron peaks appear in the
spectrum.

In XPS , the sample is irradiated by constant photon energy hw and the kinetic energy of the
electrons measured by means of spectrometer[2,3,4] .The relevant energy conservation equation is,

hw + Ey, = Ey, + Eg (K) (10)
Where E| . is the total energy of the initial state, E, is the kinetic energy of the photoelectrons ,
and E_. is the total energy of the system after ejection of the photoelectron from the K- level.

The binding energy of the photoelectron is defined as the energy required to remove it to infinity
with a zero Kkinetic energy .

hw = Ey, + Eg (k) (11)
Where EY(K)=(E. - EL ) is the binding energy of an electron in the K-level referenced to the

local vacuum level. In the solid state , the Fermi-level is used as a reference niveau . Then,
hw = Ey;, + Eg (K) (12)
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In this work we consider the case that hw >>Eg,so that E@ hw .
Under this condition the final results for the photoelectric cross-section s ,, yields,
5

_ 1.758 Eg 92 A2 (13)

" hw ghwg
From (13) we notice that s ,, decreases with increasing photon energy as (hw)5’2.

ph

Electron Impact lonization Cross-Section :

The cross-section for an inelastic electron-electron collision > e can be derived by using impulse

approximation for scattering in central force field. Then,S ¢ is given by,
s .=p e*/EEg == (14)
Where E the energy of the incident electron beam and E; is the binding energy of orbital —electron .

2. Results

during the XPS measurements the specimens were irradiated with Al K_ (hu)=1486.6eV to
obtain P,, , P, - binding energies.
Table 1 contains 5 samples of phosphorus and P,; , P, -binding energies in eV[5].

Table 1: contains samples, P, , P2, —binding energies.
All values are given in eV

The calculation of = ™ of phosphorus-subshells are presented in table 2 according to eq. (13).

In addition , table 2 illustrates ,for comparison, values of Se according to eg.(14) with supposing

the electron beam energy is the same as the energy of the K, - photons.

Table 2 : contains cross-section S ~ 1072 cm? , electronegativity C and electronegativity difference DC between

P and its adjacent —atoms.
Numbers correspond to compounds listed in table 1
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3. Discussion

From table 2 we notice that the shifts of the cross-section between P-compound are small .
Thereby , one infers that the environment of phosphorus couldn’t have affects on the s  Fig.2 .

As expected, the dependence has weak effects on the cross-section[7].

S pn (Pzp)’ 10 cm®

Fig.2. The dependence of S ph ON the difference in Pauling's electronegativity DC between phosphorus and the
neighbourig atoms.

From Fig.3 one can see a linear relationship between s ,, (P, )and s, (P,, ).

This relation reflects a stronger interaction of the 2s-subshell with the incident radiation in
contrast to the 2p-subshell.
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Fig.3: correlation S (st) with S (Pzp)

As can be seen from Fig.4 the s values are always larger than the corresponding s , values, as
electrons are charged particles in comparison with photons.
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Fig.4: Comparison ofS , with S
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