مجلة جامعة تشرين للدراسات والبحوث العلمية _ سلسلة العلوم الأساسية المجلد (23) العدد (10) 2001

Tishreen University Journal for Studies and Scientific Research-Basic Science Series Vol (23) No (10) 2001

Augmented G_graded Modules

Dr.Mashhour AL-Refaee*

(Accepted 19/9/1999)

\square ABSTRACT \square

Let G be a multiplicative group with identity e and R be an associative G-graded ring with unity 1. Let $R_{\rm e}$ be the identity component of R and $R_{\rm e}$ -gr be the category of all graded $R_{\rm e}$ -modules and their graded $R_{\rm e}$ -maps. In this paper we study the augmented G-graded modules and give some of their properties. We define R-Agr (the category of all augmented G-graded R-modules and their augmented G-graded R-maps), and show there is a functor () $_{\rm e}$ from R-Agr to $R_{\rm e}$ -gr and a functor (-) from $R_{\rm e}$ -gr to R-Agr. Moreover, () $_{\rm e}$ (-) is equivalent to $1_{\rm R}$ -gr and the two functors are equivalent for

^{*}faculty of sciences, department of the math, Yarmouk university, Erbed, Jordan

مجلة جامعة تشرين للدراسات والبحوث العلمية _ سلسلة العلوم الأساسية المجلد (23) العدد (10) 2001

Tishreen University Journal for Studies and Scientific Research-Basic Science Series Vol (23) No (10) 2001

الموديلات المدرجة الزائدة

الدكتور مشهور الرفاعي*

(قبل للنشر في 1999/9/19)

□ الملخّص □

^{*}كلية العلوم - قسم الرياضيات - جامعة اليرموك - إربد - الأردن.

0. Introduction.

Let G be a multiplicative group with identity e and R be an associative G-graded ring with unity 1. Let $R_{\rm e}$ be the identity component of R. In [5] we studied the G-graded rings for which the identity component $R_{\rm e}$ is itself a G-graded subring satisfying some related conditions with the graduation of G. We called these rings augmented G-graded rings.

In this paper we study the augmented G-graded modules and give some of their properties. It is well known that if R is a strongly G-graded ring then there is an equivalence from R-gr (the category of all G-graded R-modules and their graded R-maps) to R-mod (the category of all R-modules and their

 R_e -maps). In this paper we define a new category R-Agr and show that there is a functor ()_e from R-Agr to R_e -gr and a functor (-) from R_e -gr to R-Agr. Moreover, ()_e(-) is equivalent to 1_{R_e} -gr. Also, we show that if $supp(R,G) = \left\{g \in G: R_g \neq 0\right\} = G$ then (-) ()_e is equivalent to 1_{R-Agr} , i.e., the two functors are equivalent.

1. Preliminaries.

In this section we give some basic definitions and facts which will be used later on.

Definition 1.1. Let G be a group with identity e. Then a ring R is G-graded if there exist additive subgroups R_g of R such that $R = \underset{g \in G}{\circledast} R_g$ and R_g $R_h \subseteq R_{gh}$ for all g, $h \in G$. We denote for this graduation by (R,G) and R_e will be the identity component of R.

We say (R,G) is strongly graded ring if R_g R_h = R_{gh} for all g, h \in G. We consider supp(R,G) = $\left\{g \in G \colon R_g \neq 0\right\}$.

Definition 1.2. Let R be a G-graded ring and M is a (left) R-module. Then M is a (left) graded R-module if there exist additive subgroups M_g of M such that $M = \bigoplus_{g \in G} M_g$ and $R_\sigma M_\tau \subseteq M_{\sigma \tau}$ for all σ , $\tau \in G$. A map $f \colon M \longrightarrow M$ is a graded R-map if f is R-linear and $f(M_g) \subseteq M_g$ for all $g \in G$.

We consider R-gr to be the category of all left graded R-modules and their graded R-maps and R_e -mod to be the category of all R_e -modules and their R_e -maps. It is well known that R-gr is a Grothendieck category [3]. The connection between the category R-gr and R_e -mod is given by the following:

Theorem 1.3 (Theorem 2.8 of [1]). Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a strongly graded ring. Then the functor

 $R \otimes \cdot : R_e \text{-mod} \longrightarrow R \text{-gr given by } R_e$

M \longrightarrow R® M, where M \in Re-mod and R® M is a graded Re R-module by the grading $\left(\begin{smallmatrix} R\otimes &M\\ R_e\end{smallmatrix}\right)_{\sigma}=R_{\sigma}^{\otimes}M$, is an equivalence. Its inverse is the functor

(.)
$$_{e}\colon$$
 R-gr \longrightarrow R $_{e}$ -mod given by
$${\tt M} \longrightarrow {\tt M}_{e} \text{ where } {\tt M} \in {\tt R-gr} \text{ and } {\tt M} = {\tt \#} {\tt M}_{\sigma \in G} \ .$$

Theorem 1.4 (Proposition 1.2 of [4]). Let R be a G-graded ring. Then R is strongly graded ring iff every $M \in R$ -gr is strongly graded module.

Definition 1.5 ([5]). A ring R is said to be an augmented G-graded ring if it satisfies the following conditions:

(1) $R = {}_{\mathfrak{G}} R_{g}$ is a G-graded ring.

- (2) If R_e is the identity component of the graduation given in (1) then $R_e = \underset{g \in G}{\oplus} R_{e-g}$ where R_{e-g} is an additive subgroup of R_e and R_{e-g} $R_{e-h} \subseteq R_{e-gh}$ for all g, $h \in G$. (R_e is a G-graded ring).
- (3) For each $g \in G$, there exists $r_g \in R_g$ such that $R_g = \underset{h \in G}{\oplus} R_{e-h} r_g$, we assume $r_e = 1$.
- (4) If g, h \in G and r_g , r_h are both non-zero, then $r_g r_h = r_{gh} \text{ and } (xr_g) (yr_h) = xy r_{gh} \text{ for all } x, y \in R_e.$

Lemma 1.6 (Proposition 2.6 of [5]). Let (R,G) be augmented G-graded ring and supp(R,G) = G. Then R is a strongly G-graded ring.

2. Augmented graded modules.

In this section we define the augmented G-graded modules. Then we give some examples and properties of these modules.

Definition 2.1. Let R be an augmented G-graded ring. An R-module M is said to be an augmented G-graded R-module if it satisfies the following conditions:

- 1. $M = {}_{\mathfrak{G}}M_{\mathfrak{g}}M_{\mathfrak{g}}$ where $M_{\mathfrak{g}}$ is an $R_{\mathfrak{g}}$ -submodule of M such that $R_{\mathfrak{g}}M_{\mathfrak{h}} \subseteq M_{\mathfrak{gh}}$ for all \mathfrak{g} , $\mathfrak{h} \in G$ (i.e., $\mathfrak{M} \in R$ - \mathfrak{gr}).
- 2. $M_g = \bigoplus_{h \in G} M_{g-h}$ where M_{g-h} is an R_{e-e} -submodule of M_g and $R_{e-\sigma} M_{g-h} \subseteq M_{g-\sigma h}$ for all σ , g, $h \in G$ (i.e., $M_g \in R_{e}$ -gr).

3. $R_{g-h} M_{\sigma-\tau} \subseteq M_{g\sigma-h\tau}$ for all g, h, σ , $\tau \in G$.

Let M, N be augmented G-graded R-modules. An R-map $f\colon M \longrightarrow N \text{ is said to be an augmented G-graded R-map if} \\ f(M_{g-h}) \subseteq N_{g-h} \text{ for all g, h} \in G. \text{ We consider R-Agr to be the category of all augmented G-graded R-modules and their augmented G-graded R-maps.}$

Remarks 2.2. (1) If R is an augmented G-graded ring, $\sup_{g \in \mathbb{R}} (R,G) = G \text{ and } M \in \mathbb{R} - Agr \text{ then } M_{g-h} = r_g M_{e-h} \text{ for all } g, h \in G.$

Clearly $r_g M_{e-h} \subseteq R_{g-e} M_{e-h} \subseteq M_{g-h}$. Let $x \in M_{g-h}$. By Lemma 1.6, (R,G) is strongly graded ring and hence by Theorem 1.4, M is strongly graded module. Therefore, $M_{g-h} \subseteq M_g = r_g M_e$ and hence $x = r_g m$ for some $m \in M_e = \bigoplus_{h \in G} M_{e-h}$. Assume $m = \sum_{j=1}^{m} m_{e-h_j}$, then $x = r_g m = r_g m_{e-h_1} \oplus \cdots \oplus r_g m_{e-h_n}$. Since $m_g = \bigoplus_{h \in G} M_{g-h}$, $m_g =$

- (2) If $M \in R$ -Agr then $M \in R_e$ -gr with $M(g) = \bigoplus_{\sigma \in G} M_{\sigma-g}$
 - 1. $M \in R_e$ -mod (with the same product of R on M).
 - 2. $M(g) \in R_{e-e}$ -mod because $R_{e-e} M_{\sigma-g} \subseteq M_{\sigma-g}$ for all $\sigma \in G$.
 - 3. $R_{e^{-\sigma}} M_{(g)} \subseteq M_{(\sigma g)}$ because $R_{e^{-\sigma}} M_{\tau g} \subseteq M_{\tau \sigma g} \subseteq M_{(\sigma g)}$ for all $\tau \in G$.
 - 4. Clearly $M = \bigoplus_{g \in G} M(g)$.

Definition 2.3. Let M be an augmented G-graded R-module, and X be an R-submodule of M. then X is said to be an augmented G-graded R-submodule of M if it satisfies the following conditions:

- 1. $X = \bigoplus_{g \in G} X_g$ where $X_g = X \cap M_g$, i.e., X is a G-graded R-submodule of M.
- 2. $X_g = \underset{\sigma \in G}{\oplus} X_{g-\sigma}$ where $X_{g-\sigma} = X_g \cap M_{g-\sigma}$

Remarks 2.4. Let $M \in R$ -Agr and X be an augmented G-graded R-submodule of M. Then

1. X_g is R_e -submodule of X.

Since $R_e X_g \subseteq X$ and $R_e M_g \subseteq M_g$ we have $R_e X_g \subseteq X \cap M_g = X_g$.

- 2. $R_{e-\sigma}X_{g-\tau} \subseteq X_{g-\sigma\tau}$.
- Since $R_{e-\sigma}X_{g-\tau} \subseteq X_g$ and $R_{e-\sigma}X_{g-\tau} \subseteq R_{e-\sigma}M_{g-\tau} \subseteq M_{g-\sigma\tau}$ we have $R_{e-\sigma}X_{g-\tau} \subseteq X_g \cap M_{g-\sigma\tau} = X_{g-\sigma\tau}$
 - 3. $R_{\sigma-\tau}^{X}g-h \subseteq X_{\sigma g-\tau h}$. Since $R_{\sigma-\tau}^{X}X_{g-h} \subseteq R_{\sigma}^{X}X_{g} \subseteq X_{\sigma g}$ and $R_{\sigma-\tau}^{X}X_{g-h} \subseteq R_{\sigma-\tau}^{M}x_{g-h} \subseteq M_{\sigma g-\tau h}$ we have $R_{\sigma-\tau}^{X}X_{g-h} \subseteq X_{\sigma g} \cap M_{\sigma g-\tau h} = X_{\sigma g-\tau h}$.
 - 4. $R_{\sigma}^{X_g} \subseteq X_{\sigma g}$. Since $R_{\sigma}^{X_g} \subseteq X$ and $R_{\sigma}^{X_g} \subseteq M_{\sigma g}$ we have $R_{\sigma}^{X_g} \subseteq X \cap M_{\sigma g} = X_{\sigma g}$.

Proposition 2.5. Let $M \in R$ -Agr and X be a G-graded R_e -submodule of M_g . Then RX is an augmented G-graded R-submodule of M.

Proof: (1) RX is an R-submodule of M.

- (2) Since $(RX)_{\sigma} = RX \cap M_{\sigma} = R_{\sigma g^{-1}} X$ we have $RX = \bigoplus_{\sigma \in G} (RX)_{\sigma}$.
- (3) Since $(RX)_{\sigma-\tau} = (RX)_{\sigma} \cap M_{\sigma-\tau} = \bigoplus_{h \in G} R_{\sigma^{-1}g-h} X_{h^{-1}\tau}$ we have $(RX)_{\sigma} = \bigoplus_{\tau \in G} (RX)_{\sigma-\tau}$.

Now we give two essential examples of augmented graded modules. The idea of those examples is similar to the examples of augmented graded rings given in [5].

Example 2.6. Let R be a G-graded ring and M \in R-gr. Let R[G] be the group ring of R over G. Then clearly R[G] is an augmented G-graded ring with:

 $R[G]_g = R.g$, $R[G]_{e-g} = R_g.e$ and $r_g = 1.g$ for all $g \in G$. Let $M[G] = \oplus M.g$. For $r.\sigma \in R[G]$ and $m.\tau \in M[G]$, define $g \in G$

- (ro)(mt) = rmot. Then M[G] \in R[G]-Agr with M[G]_g = M.g and M[G]_{g-\sigma} = M_{\sigma}.g.
- 1. Since $M[G]_g$ is $R[G]_e$ -submodule of M[G] and $R[G]_g$ $M[G]_\sigma = R.g$ $M.\sigma \subseteq M.g\sigma = M[G]_{g\sigma}$ we have $M[G] = \bigoplus_{g \in G} M[G]_g$.
- 2. Since $M[G]_{g-h}$ is R_{e-e} -submodule of $M[G]_g$ and $R[G]_{e-\sigma} M[G]_{g-h} = R_{\sigma}.e M_h.g \leq M_{\sigma h}.g = M[G]_{g-\sigma h} \text{ we have } M[G]_g = \bigoplus_{h \in G} M[G]_{g-h}, \text{ i.e., } M[G]_g \text{ is a G-graded } R_e\text{-module.}$
- 3. $R[G]_{g-h} M[G]_{\sigma-\tau} = R_h \cdot g M_{\tau} \cdot \sigma \subseteq M_{h\tau} g \sigma = M[G]_{g \sigma-h \tau}$ for all g, h, σ , $\tau \in G$.

Example 2.7. Let R be a G-graded ring and M \in R-gr. Let $\overline{R[G]}$ be the left free R-module with basis G. For the elements $\lambda_{\sigma}\tau$, λ , τ where $\lambda_{\sigma} \in R_{\sigma}$ and λ , $\in R$, define $(\lambda_{\sigma}\tau)$ $\begin{pmatrix} \lambda \\ \sigma \end{pmatrix}$ $\begin{pmatrix} \lambda \\ \sigma$

 $\overline{R[G]}_g = \underset{\sigma \in G}{\oplus} R \underset{g\sigma^{-1}}{\sigma}$, $\overline{R[G]}_{e-g} = R_g g^{-1}$ and $r_g = 1.g$ for all $g \in G$.

Let $\overline{M[G]} = \emptyset$ M.g. Then $\overline{M[G]}$ is an augmented G-graded geG

R[G]-module with:

- 1. $\overline{M[G]} \in \overline{R[G]}$ -mod (see [2]).
- 2. $\overline{M[G]}_g = \underset{\sigma \in G}{\oplus} \underset{g\sigma^{-1}}{M[G]} \sigma$ is $\overline{R[G]}_e$ -submodule of $\overline{M[G]}$ because $R_h h^{-1} \underset{g\sigma^{-1}}{M} \overset{\sigma \subseteq M}{hg\sigma^{-1}} \overset{\sigma G^{-1}h^{-1}}{\sigma g} \overset{\sigma \subseteq \overline{M[G]}_g}{=}$. Since $R_g \overset{\sigma^{-1}}{\sigma h} \overset{\sigma = M}{h\tau^{-1}} \overset{\sigma \subseteq M}{\sigma g\sigma^{-1}h\tau^{-1}} \overset{\tau h^{-1}\sigma h}{\sigma h} \overset{\sigma \subseteq \overline{M[G]}_{gh}}{=} \overset{\sigma \to M}{=} \overset{\sigma \to M$
- 3. Clearly $\overline{M[G]}_{g-h} = M_h \quad h^{-1}g \quad \text{is } \overline{R[G]}_{e-e} \text{submodule of } \overline{M[G]}_g$ and $\overline{R[G]}_{e-\sigma} \quad \overline{M[G]}_{g-h} = R_\sigma \quad \sigma^{-1} \quad M_h \quad h^{-1}g \subseteq M_{\sigma h} \quad h^{-1}\sigma^{-1}g = \overline{M[G]}_{g-\sigma h}. \quad \text{Hence } \overline{M[G]}_g = \bigoplus_{h \in G} \overline{M[G]}_{g-h}, \quad \text{i.e., } \overline{M[G]}_g \quad \text{is a } G\text{-graded } \overline{R[G]}_e\text{-module.}$
- 4. $\overline{R[G]}_{g-h} \overline{M[G]}_{\sigma-\tau} = R_h h^{-1}g M_{\tau} \tau^{-1}\sigma \subseteq R_{h\tau} \tau^{-1}h^{-1}g\sigma = \overline{M[G]}_{g\sigma-h\tau}$ for all h, g, σ , $\tau \in G$.

3. Equivalent functors.

we have the following assertions:

In this section R will be an augmented G-graded ring. Let $M \in R_e$ -gr and $\overline{M} = \# M.g$. For $m \in M$, $\sigma \in G$ and $g \in G$ $x_{e-h} \in R_{e-h} \quad \text{let} \quad x_{e-h} \quad r_g \in R_{e-h}r_g \quad \text{and} \quad m\sigma \in \overline{M}. \quad \text{Define}$ $\left(x_{e-h}r_g\right)m\sigma = x_{e-h} \quad mg\sigma. \quad \text{Then one can easily extend this}$ $product to a multiplication of R on \overline{M}. \quad \text{With these notations}$

Proposition 3.1. $\overline{\mathbb{M}} \in \mathbb{R}$ -Agr with $\overline{\mathbb{M}}_g = \mathbb{M}.g$ and $\overline{\mathbb{M}}_{g-h} = \mathbb{M}_h.g$.

Proof: (1) To show $\overline{\mathbb{M}} \in \mathbb{R}$ -mod we only need to show that if $\begin{aligned} & x_{e-h_1}r_{g_1} \in \mathbb{R}_{g_1-h_1}^{-0}, & x_{e-h_2}r_{g_2} \in \mathbb{R}_{g_2-h_2}^{-0} & \text{and } m\sigma \in \overline{\mathbb{M}} \text{ then} \\ & \left[\left(x_{e-h_1}r_{g_1} \right) \left(x_{e-h_2}r_{g_2} \right) \right] (m\sigma) = \left(x_{e-h_1}r_{g_1} \right) \left[\left(x_{e-h_2}r_{g_2} \right) (m\sigma) \right]. \end{aligned}$ But $\left[\left(x_{e-h_1}r_{g_1} \right) \left(x_{e-h_2}r_{g_2} \right) \right] (m\sigma) = \left[x_{e-h_1} x_{e-h_2}r_{g_1} \right] (m\sigma)$ $= x_{e-h_1} x_{e-h_2} mg_1 g_2 \sigma = \left(x_{e-h_1}r_{g_1} \right) \left(x_{e-h_2}mg_2 \sigma \right)$ $= \left(x_{e-h_1}r_{g_1} \right) \left[\left(x_{e-h_2}r_{g_2} \right) m\sigma \right].$

- (2) For $m \in M$ and $x_{e-h_1} \in R_{e-h_1}$ let $x_{e-h_1} r_g \in R_g$ and $mh \in \overline{M}_h$. Then $\left(x_{e-h_1} r_g\right) (mh) = x_{e-h_1} mgh \in \overline{M}_{gh}$, i.e., $R_g \overline{M}_h \subseteq \overline{M}_{gh}$. Clearly \overline{M}_g is R_e -submodule of \overline{M} and $\overline{M} = \bigoplus_{g \in G} \overline{M}_g$.
- (3) $\overline{M}_g = \underset{h \in G}{\circ} M_h \cdot g = \underset{h \in G}{\circ} \overline{M}_{g-h}$ where \overline{M}_{g-h} is R_{e-e} -submodule of \overline{M}_g and $R_{e-h_1} \overline{M}_{g-h} = R_{e-h_1} M_h \cdot g \leq M_{h_1h} \cdot g = \overline{M}_{g-h_1h}$.
- (4) $R_{g-h} \overline{M}_{\sigma-\tau} = (R_{e-h}r_g)(M_{\tau}\sigma) \leq M_{h\tau} g\sigma = \overline{M}_{g\sigma-h\tau}$ for all g, h, σ , $\tau \in G$.

Proposition 3.2. Let M, N \in R_e-gr and f: M \longrightarrow N. Then $\overline{f} \colon \overline{M} \longrightarrow \overline{N}$ given by $\overline{f}(m\sigma) = f(m) \sigma$ is a morphism in R-Agr.

Proof: (1) $\overline{f} \in \mathbb{R}$ -mod because $\overline{f}(m_1\sigma + m_2\sigma) = \overline{f}(m_1 + m_2) \sigma = f(m_1 + m_2) \sigma = f(m_1) \sigma + f(m_2)\sigma$ and $\overline{f}(x_{e-h} r_g m\sigma) = \overline{f}(x_{e-h} mg\sigma) = f(x_{e-h} m)g\sigma = x_{e-h} f(m)g\sigma = x_{e-h} r_g f(m)\sigma = x_{e-h} r_g \overline{f}(m\sigma)$.

(2) $\overline{f}(\overline{M}_{\sigma-\tau}) = \overline{f}(M_{\sigma} \tau) = f(M_{\sigma}) \cdot \tau \in N_{\sigma} \cdot \tau = \overline{N}_{\sigma-\tau}$

 $\frac{\text{Proposition 3.3.}}{\text{and f} \longrightarrow \overline{f}} \text{ is a functor.} \qquad \text{R-Agr such that M} \longrightarrow \overline{M}$

(2) ()_e: R-Agr \longrightarrow R_e-gr such that M \longrightarrow M_e and f \longrightarrow f|_{Me} is a functor.

Proof: (1) To show (-) is a functor:

- 1. If $M \in R_e$ -gr then $\overline{M} \in R$ -Agr by Proposition 3.1.
- 2. If $f \in R_e$ -gr then $\overline{f} \in R$ -Agr by Proposition 3.2.
- 3. Let $f: M \longrightarrow N$, $g: N \longrightarrow P$ and $\overline{g \circ f}: \overline{M} \longrightarrow \overline{P}$. Then $\overline{g \circ f}(m\sigma) = (g \circ f(m)) \ \sigma = g \ (f(m)) \ \sigma = \overline{g}(f(m)\sigma) = \overline{g \circ f}(m\sigma)$, i.e., $\overline{g \circ f} = \overline{g} \circ \overline{f}$.
- 4. Let $1_M \colon M \longrightarrow M$ be the identity function in R_e -gr.

 Then clearly $\overline{1} \colon \overline{M} \longrightarrow \overline{M}$ is the identity function on \overline{M} in R-Agr.
- (2) To show () is a functor.

Let $f: M \longrightarrow N$ and $g: N \longrightarrow P$ be elements in R-Agr.

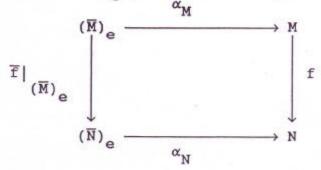
Then
$$(g \circ f) \mid_{M_e} : M_e \longrightarrow P_e \text{ and } (g \circ f) \mid_{M_e} = \left[g \mid_{N_e} \right] \circ \left[f \mid_{M_e} \right].$$

The other parts are obvious.

coposition 3.4. ()e(-) is equivalent to 1R -gr.

roof: We only need to define a natural transformation $(\)_e({}^-) \to {}^1\!R_e{}^-gr \text{ in which } \alpha_M^{} \colon (\overline{M})_e^{} \to \text{M is an equivalence}$ ${}^1\!R_e{}^-gr \text{ for every M} \in R_e{}^-gr.$

Let $M \in R_e$ -gr. Define $\alpha_M \colon (\overline{M})_e \longrightarrow M$ by $\alpha_M(m.e) = m$. Let $M \in R_e$ -gr. Define $\alpha_M \colon (\overline{M})_e \longrightarrow M$ by $\alpha_M(m.e) = m$. Let $M \in R_e$ -gr. Also, for every exphism $f \colon M \longrightarrow N$ in R_e -gr the following diagram commutes:



herefore, α is a natural transformation. The equivalence of in R_e-gr is obvious.

coposition 3.5. If supp(R,G) = G then $(-)()_e$ is equivalent $^{1}R-Agr^{*}$

coof: Let $\beta_M \colon \overline{M}_e \longrightarrow M$ be given by $\beta_M(m\sigma) = r_\sigma$ m. We show $(-)(\)_e \longrightarrow 1_{R-Agr} \text{ is a natural transformation and } \beta_M \text{ is equivalence in } R-Agr.$

Let $f: M \longrightarrow N$ be R-Agr map. Consider the diagram:



Let $m \in M_e$ and $m\sigma \in \overline{M}_e$. Then $\beta_N \ \overline{f}_e(m\sigma) = \beta_N \Big(f_e(m)\sigma \Big) = r_\sigma f_e(m) = r_\sigma f(m) = f(r_\sigma \ m) = f \ \beta_M(m\sigma)$, i.e., the diagram commutes and hence β is a natural transformation.

Since $\operatorname{supp}(R,G) = G$, $\operatorname{M}_{\sigma} = \operatorname{r}_{\sigma} \operatorname{M}_{e}$ by Remark 2.2 and hence every $x \in \operatorname{M}_{\sigma}$ can be written as $\operatorname{r}_{\sigma}$ m for some $\operatorname{m} \in \operatorname{M}_{e}$. Define $\gamma \colon \operatorname{M} \longrightarrow \overline{\operatorname{M}}_{e}$ by $\gamma(\operatorname{r}_{\sigma} \operatorname{m}) = \operatorname{m}.\sigma$ where $\operatorname{m} \in \operatorname{M}_{e}$. Then clearly $\gamma \in \operatorname{R-Agr}$. Now, $\gamma \beta_{\operatorname{M}}(\operatorname{m}\sigma) = \gamma(\operatorname{r}_{\sigma} \operatorname{m}) = \operatorname{m}\sigma$ and $\beta_{\operatorname{M}} \gamma(\operatorname{r}_{\sigma} \operatorname{m}) = \beta_{\operatorname{M}}(\operatorname{m}\sigma) = \operatorname{r}_{\sigma}$ m. Therefore, β_{M} is an equivalence in R-Agr.

References.

- [1] E. C. Dade, Group graded rings and modules, Math. Z. 174, 241-261 (1980).
- [2] C. Nastasescu, Group rings of graded rings. Applications, J. of Pure and applied algebra 33, 313-335 (1984).
- [3] C. Nastasescu, and F. Van Oystaeyen, Graded Ring Theory,
 Mathematical Library 28, North Holland, Amsterdam
 (1982).
- [4] C. Nastasescu, and F. Van Oystaeyen, On strongly graded rings and crossed products, Comm. in Algebra 10 (19), 2085-2106 (1982).
- [5] M. Refai, Augmented graded rings, Turkish Journal of Mathematics, 21(1), 1-9, (1996).