Domination Numbers Of Grids $P_{14} \times P_n$ Mathematics subject classification: 05C69

Dr. Mahmod Saood* Dr. Kaled Knefes* Dr. Jobran Jobran*

(Received 5 / 11 / 2017. Accepted 3 / 4 /2018)

\square ABSTRACT \square

This paper concerns the domination numbers $\gamma(P_k \times P_n)$ for the $P_k \times P_n$ grid graphs for k = 14 and for all $n \ge 1$.

These numbers were previously established for $1 \le n \le 12[2]$, [5].

Keywords: dominating Set, domination number, transformation of a dominating set, Cartesian product of two paths.

Professor, Faculty of Sciences, Damascus University, Damascus, Syria

^{**}Assistant Professor, Faculty of Sciences, Damascus University, Damascus, Syria *** Lecturer Professor - High School for Professors - El Kouba - Algeria

مجلة جامعة تشرين للبحوث والدراسات العلمية - سلسلة العلوم الأساسية المجلد (40) العدد (20) العدد (20) Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (40) No. (2) 2018

$P_{14} \times P_n$ مراتب السيطرة للشبكات مراتب 105C69 مراتب موضوع الرياضيات

الدكتور محمود سعود *

الدكتور خالد خنيفيس * *

الدكتور جبران جبران ***

(تاريخ الإيداع 5 / 11 / 2017. قُبِل للنشر في 3 / 4 /2018

□ ملخّص □

 $p_k imes p_n$ هذه الورقة تهتم بمراتب السيطرة $\gamma(p_k imes p_n)$ لأجل البيانات الشبكية $n \geq 1$ من اجلk = 14من اجل $n \geq 1$ كل $n \leq 12$ [2]; $n \leq 12$ هذه المراتب درست من قبل لأجل $n \leq 12$ [2].

الكلمات المفتاحية: مجموعة سيطرة، مرتبة سيطرة، نقل مجموعة سيطرة، الجداء الديكارتي لمسارين.

^{*} مدرس - قسم الرياضيات - كلية العلوم - جامعة دمشق - دمشق - سورية.

^{**} أستاذ- قسم الرياضيات- كلية العلوم- جامعة دمشق- دمشق- سورية.

^{***} استاذ محاضر - المدرسة العليا للاساتذة - القبة - الجزائر.

Introduction:

A dominating set in a graph is a set of vertices having the property that every vertex not in the set is adjacent to a vertex in the set. The domination number $\gamma(G)$ of a graph G is the cardinality of a smallest dominating set in G.

The problem of finding the domination number of a arbitrary grid graph (=subgraph of $P_k \times P_n$) is NP-complet[3],[4].

In this paper, we introduce the concept of transforming the domination From avert ex in a dominating set D of graph G = (V, E) to avert ex in

V - D, where G is a simple connected graph. We give an algorithm using this transformation to obtain a dominating set of agraph G.

A graph G = (V, E) is a mathematical structure which consists of two sets V and E, where V is finite and nonempty, and every element of E is an unordered pair $\{u, v\}$ of distinct elements of V; we simply write uv instead of $\{u, v\}$.

The elements of V are called vertices, while the elements of E are called edges [1].

Two vertices u and v of a graph G are said to be adjacent if $uv \in E$.

The neighborhood of v is the set of all vertices of G which are adjacent to v;

the neighborhood of v is denoted by N(v). The closed neighborhood of v is $\overline{N}(v)$, $\overline{N}(v) = N(v) \cup \{v\}$.

The degree d(v) of a vertex v is the cardinality |N(v)|, d(v) = |N(v)|.

Definition:

Let D be a dominating set of a graph G = (V, E).

1. We define the function C_D , which we call the weight function, as follows: $C_D: V \to \mathbb{N}$, where \mathbb{N} is the set of natural numbers, $C_D(v) = |\widetilde{N}(v)|$, where $\widetilde{N}(v) = \{w \in D : vw \in E \text{ or } w = v\}$

i.e. the weight of v is the number of vertices in D which dominate v.

- **2.** We say that $v \in D$ has amoving domination if there exists a vertex $w \in N(v) D$ such that $wu \in E$ for every vertex $u, u \in \{x \in N(v): C_D(x) = 1\}$.
- **3.** We say that avertex $v \in D$ is a redundant vertex of D if $C_D\{w\} \ge 2$ for every vertex $w \in \overline{N}(v)$.
- **4.** If $v \in D$ has a moving domination, we say that v is ine ffi cient if transforming the domination from v to any vertex in N(v) would not produce any redundant vertex.

Grid graph $P_k \times P_n$:

For two vertices v_0 and v_n of a graph G, a $v_0 - v_n$ walk is an alternating sequince of vertices and edges v_0 , e_1 , v_1 , ..., e_n , v_n such that consecutive vertices and edges are incident.

A path is a walk in which no vertex is repeated. A path with n vertices is denoted by P_n , it has n-1 edges; the length of P_n is n-1; the cartesian product $P_k \times P_n$ of two paths is the grid graph with vertex set

$$V = \{(i,j): 1 \le i \le k, 1 \le j \le n\}$$
where $(u_1, u_2)(v_1, v_2)$ is a edge of $P_k \times P_n$ if $|u_1 - v_1| + |u_2 - v_2| = 1$ [4].

If D is a dominating set of $P_k \times P_n$ which has no redundant vertex, then a vertex $v \in D$ has a moving domination if and only if one of the following two casesoccurs:

Case (1): for every vertex $w \in N(v)$, we have $C_D(w) \ge 2$.

In this case, the domination of v can be transformed to any vertex in N(v) - D.

Case(2): there exists exactly one vertex $u \in N(v)$ such that $C_D(u) = 1$. In this case, the domination of v can be transformed only to u.

Analgorithm for finding a dominating set of a graph $P_k \times P_n$ using a transformation of domination of vertices:

1. Let $P_k \times P_n = (V, E)$ be a graph of order greater than 1; |V| = m.

2. Let D = V be a dominating set of $P_k \times P_n$. then, for any vertex $v \in D$ we have $C_D(v) = d(v) + 1 \ge 2$.

3. Pick a vertex v_1 of D, and delete from D all vertices $w, w \in N(v_1)$.

then, for 1 < n < m/2, pick a vertex $v_n \in D - \bigcup_{i=1}^{n-1} \overline{N}(v_i)$ and delete from D all vertices $w, w \in N(v_n) - \bigcup_{i=1}^{n-1} \overline{N}(v_i)$ If D contains a redundant vertex, then delete it.

Repeat this process until *D* has no redundant vertex.

4. Transform domination from vertices of D which have moving domination to vertices in V - D to obtain redundant vertices and go to step4.

If no redundant vertex can be obtained by a transformation of domination of vertices of D, then stop, and the obtained dominating set D satisfies:

for every $v \in D$, $\exists w \in \overline{N}(v)$ such that $C_D(w) = 1$.

Example:

- 1. Let (k, n) be the vertex in the k th row and in the n th column of the graph $G = P_{14} \times P_{12}$; |V| = 168.
 - **2.** Let D = V, dominating set of G.
- **3.** Pick a vertex $v_1 = (1,2) \in D$, and delete from D all vertices $w, w \in N(v_1)$, then, for 1 < n < 168/2, pick a vertex $v_n, v_n \in D \bigcup_{i=1}^{n-1} \overline{N}(v_i)$, and delete from D all vertices $w, w \in N(v_n) \bigcup_{i=1}^{n-1} \overline{N}(v_i)$. We obtain the dominating set D (black circles) in figure 1.

Figure 1.

4. Since for every vertex vD, $\exists w \in \overline{N}(v)$ such that $C_D(w) = 1$, D has

no red un dantvertices.

Transform the domination from the vertex (1,12) to the vertex (2,12) and delete, from D, the resulting redundant vertex(3, 11).

The set D indicated in figure 2 (black circles) is a dominating set of $G = P_{14} \times P_{12}$

Note that D is a minimum dominating set (see [2]). $\gamma(P_{14} \times P_{12}) = 40$.

$$n = 12, \gamma(P_{14} \times P_{12}) = 4(n-8) + 24$$

= $4n-8$

By the same method, we give $\gamma(P_{14} \times P_n)$; $n \ge 1$.

$$n = 5, \gamma(P_{14} \times P_5) = 4(n-2) + 6$$

= $4n-2$

$$n = 6, \gamma(P_{14} \times P_6) = 4(n-3) + 9$$
 $n = 7, \gamma(P_{14} \times P_7) = 4(n-3) + 8$
= $4n-3$

n = 8, $\gamma(P_{14} \times P_8) = 4(n-6) + 20$ =4n-4

$$n = 9$$
, $\gamma(P_{14} \times P_{9}) = 4(n-5) + 16$
= $4n-5$

$$n = 11, \gamma(P_{14} \times P_{11}) = 4(n-8) + 25$$

= $4n-7$

$$n = 17, \gamma(P_{14} \times P_{17}) = 4(n-12) + 36$$

= $4n-12$

Hence:

$$\gamma(P_{14}\times P_n) = \begin{cases} &5 \ ; n=1\\ &8 \ ; n=2\\ &11 \ ; n=3\\ &14 \ ; n=4\\ &18 \ ; n=5\\ &21 \ ; n=6\\ &4n-(4+8t+18k) \ ; n=7+10t+22k\\ &4n-(m+4t+18k) \ ; n=4+m+5t+22k, 4 \le m \le 7.\\ &4n-(8+9t+18k) \ ; n=12+11t+22k\\ &4n-(m+5t+18k) \ ; n=6+m+6t+22k, 12 \le m \le 16. \end{cases}$$

where t, kand mare positive integers, $0 \le t \le 1, k \ge 0$.

References.

- [1] J.A. BONDY; U.S.R. Murty, Graph theory, Springer, 2008.
- [2] TONY YU CHANG, W. EDWIN CLARK, ELEANOR O. HARE, Domination Num- bers of complete grid graph, I. Arscombinatoria 38,1995, 97-111.
- [3] B.N. Clark, C.J. Colboura and D.S. Johnson, Unit disk graphs, Discrete Math., 86, 1990,165-177.
- [4] TONY YU CHANG, W. EDWIN CLARK, *The domination numbers of* $5 \times n$ *and* $6 \times n$ *grid graphs.* Journal of Graph Theory, vol. 17, No. 1, 81-107 (1993).
- [5]M.SAOUD, Domination Numbers Of The Complete Grid Graphs $P_k \times P_n$, ActaScientiarum, v.34, n.3, 2012, 321-324.