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O ABSTRACT 0O

In this paper, a spline collocation method is developed for finding numerical
solutions of general linear eighth-order boundary-value problems (BVPs) and nonlinear
eighth-order initial value problems (IVPs). The presented collocation method affords the
spline solution by the polynomial of degree eleventh which satisfies the BVPs and IVPs at
three collocation points. The study shows that the spline collocation method when is
applied such this problems is existent and unique. Moreover, the purposed method if
applied to these systems will be consistent and the global truncation error equal eleventh.

Numerical results are given for four examples to illustrate the implementation and
efficiency of the method. Comparisons of the results obtained by the present method with
results obtained by the other methods reveal that the present method is very effective and
convenient.
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Introduction:

Higher-order boundary value problems are known to arise in the study of
astrophysics, hydrodynamic and hydro magnetic stability, fluid dynamics, astronomy,
beam and long wave theory, engineering and applied physics. The several spline methods
have been extensively applied in numerical ordinary differential equations due to its easy
implementation and high-order accuracy. Recently, various powerful mathematical
methods have been proposed to obtain numerical solutions for special linear eighth-order
BVPs of the form:

y@ () +a(x) y(x)=9(x), xe [a,b], (11)
subject to the following two types of boundary conditions:
_ ’ _ " _ (3 —
Type {y(a) =g, ¥'(8) =, y'(8) =, Y (@) = (L.13)
y(0) = £, y'(0) = B,y () = 5,y (b) = 5,

y@) =a, y'@=a,y?@=a,y%@)=q,,

Type II: { . @ © :
y(0) = 5o, y'(0) = B,y (b) = B,y (b) = fs,
where «;,f5, (i =0, 1,3) and «,,f, (i = 2,3) are finite real constants and the

functions q(x) and g(x) are continuous on [a, b].

Several numerical methods including spline approximations and collocation [1-4],
non-polynomial spline method by Jaleb and Farajeyan [1, 2008], similar spline technique
by Rashidinia et al. in [2, 2009], spline collocation method by Lamnii et al. in [3, 2008]
and quintic B-spline collocation method by Kasi et al. in [4, 2012] have been developed for
solving the problem (1.1)-(1.1b). Noor and Mohyud-Din [5, 2007] have been implemented
a analytical method is an combination of variational iteration method and decomposition
method for solving (1.1) with conditions (1.1b). Variational iteration methods are been
used by Siddigi et al. [6, 2009] and Porshokouhi et al. [9, 2011] for solving (1.1) with
conditions of the type (1.1a).

Moreover, optimal homotopy asymptotic and homotopy perturbation methods for the
solution of higher-order boundary value problems are presented in [11-13].

In this paper, spline collocation techniques are presented of the numerical
solutions for two types of problems. The first type, general linear eighth-order BVPs of the
form:

YO 00+36,00 ¥ 00 =90, xe [a bl 2

subject to the following two cases of boundary conditions the type (1.1b) and (1.1a),
where g;(x) (i =0,...,7) are all continuous functions on [a, b].
The second type, general nonlinear eighth-order initial value problems of the form:

(1.1b)

yO) =1y y,y"..y"), xe [ab], (13)
with the following initial conditions:
yY@=¢,i=01..7. (1.3a)

Hesaaraki and Jalilian [7, 2008] and Torvattanabun and Koonprasert [8, 2010] have
been applied variational iteration methods of numerical solution for the problem (1.3) with
boundary conditions (1.1a). Fazal-i-Haqg Fazal-i-Haq et al. [10, 2010] have been presented
a collocation method based on Haar wavelets of the numerical solution for the problems
from the form (1.3)-(1.3a).
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Importance of Research and its Aim:

It is well known that the analysis solutions of those higher-order BVPs are either
very difficult or not existent. For these causes, the numerical solutions of proposed
problems are very important.

This paper aims to develop spline polynomial method with three collocation
points for finding the spline solutions for general linear eighth-order BP (1.2), and general
nonlinear eighth-order I\VVPs (1.3).

Methodology:

The paper is organized as follows. In section 2, the eighth-order BVP (1.2) with two
types of boundary conditions (1.1a)-(1.1b) is transformed into five initial value problems
(IVPs). Spline functions with three collocation points are directly applied into eighth-order
IVPs and then finding the numerical spline solution and its derivatives up to eighth-order
of the problem (1.2) with the two cases of boundary conditions (1.1a)-(1.1b). Moreover,
spline functions are directly applied into nonlinear eighth-order I\VPs for finding its spline
numerical solution. Section 3, the existence and uniqueness of spline solution of the
eighth-order BVP are proved. The error estimation and order of convergence of the spline
method are discussed in section 4. Section 5, examples and comparisons are made to
confirm the efficiency and implementation of the proposed method.

2- Spline Collocation Method

In this section, the eighth-order BVP is transformed into five IVPs. After that,
spline functions are formulated to be applied directly into the five I\VVPs for finding the
spline solution and its derivatives up to eighth-order of the problem proposed.

2.1 Solution Scheme of eighth-order BVP

Consider the eighth-order BVP (1.2):

7 .
y&@ ) =->a,(x) y?(x)+9(x), xe [a b], (2.1)
i=0
subject to the following two cases of boundary conditions:
_ ’ _ " — (3 —
Case | {y(a) o V@) =i, ¥ (@) = a7, YO @) =t 2.13)
y(0) = S, y'(B) = B, y'(0) = B,y (b) = S5

Case Il {y(a) =0, Y@=y @) =,y (@) =a. (2.1b)
y(b) =5, y"(0) = B,y (b) = B, y© (b) = 5,

Let y(x) be the unique solution to the BVVP (2.1) with either conditions case (2.1a)

or (2.1b), then this solution is associated by a linear combination consist of five special

IVPs. To find it, we assume that U(x) is the unique solution to the following eighth-order

IVP:

7 .
UPx)=->qu®(x)+g(x), a<x<h, (2.2)
i=0
with the following initial conditions:
Casel: U%@)=¢,, (k=0123), U¥@=0, (k=4,..,7), (2.2a)
Casell: U®a)=a,, U@ =0, (k=0123) (2.2b)

In addition, suppose that U1(x), U2(x) Us(x) and Uas(x) are the unique solutions to the
following four homogeneous eighth-order IVPs, respectively, the first equation:
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.
U® ==>q U (x), a<x<b, (2.3)
i=0
with the following initial conditions:
Casel: U(@)=0, (k=0123), U (@)=1 UM ()=0 (k=56,7), (2.3a)
Casell: U/ (@)=0(k=0123), U/(a)=1,U% @) =0, (k=123). (2.3b)
The second equation
7
UP =->"qUP(x), a<x<b (2.4)
i=0
with the following initial conditions:
Case I: U¥@=0, (k=01..4), UP@@=1,U{@)=0 (k=6,7), (2.4a)

Case Il: U%“(a)=0(k=0123), U;(a)=0,U @) =L,UP (@) =0, (k=23) (2.4b)
The third equation

7 .
UP =->q,U(x), a<x<b, (2.5)
i=0
with the following initial conditions:
Case . U{®(@)=0, (k=01..5), UP(a)=1 U{(a)=0, (2.5a)

Case Il: U (@) =0(k=0123), UP @) =1 U{"(@)=Uj(@)=UP(@)=0. (2.50)
The final fourth equation:

;

UP =->quP(x), a<x<b (2.6)
i=0

with only the following initial conditions:

U®@=0, (k=01..6), U"(a) =1, (2.6a)

Then, for four real constants c,,c,,c;, and c,there exist the linear combinations,
such that:

y(x) =U(x) +ZAZCKUK (2.7)

is a solution to the eighth-order BVP (2.1) with either conditions case (2.1a) or case
(2.1b), as seen by the following computations:

YO (0 =U® (9 + Y U =
=— Z g, (U D (x) + g(x) + Z C, [—Z g, (U P (X)]
=3 G (MU0 + UL 1+ 600 = 30,00 ¥ 0+ 509,

4
where yOx)=Ux)+> cUP(x),i=01,..,7.
k=1

Now, it will be illustrated that the solution y(x) the formulated by equation (2.7)
holds on the two cases of boundary values (2.1a)-(2.1b), thus from conditions the case
(2.1a) it yields out:

y© (@) =U®(a) + ick UP@)=q + ick 0 =¢«, (1=0123)
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The unknown constants c,,c,,c;, and ¢, will be determined from the remainder of
the end conditions by solving the system of equations:
4
y'®)=U"®)+> U ) =4, (i=0123), (2.8)

k=1
Moreover, from the second case conditions (2.1b), it also produces:

4 4
y®(@=u" @+ c U @=ay+2 c0)=ay, (i=0123),
k=L k=L

The unknown constants c,,c,,c,, and ¢, will are determined from the remainder end
conditions of the second case (2.1b), namely, the system of equations:

YO (6) =UE(b)+ 36 U (b) = B, (i=012.3), (2.9)

Now, since the propbsed BVP (2.1)-(2.1b) has reduced into five IVPs (2.2)-(2.6),
spline solutions with three collocation points are applied for solving of eighth-order IVPs.

2.2 Formulation of the Spline Approximations.

Denote by x, =a-+ih, i=0@)N, the grid points of the uniform partition of [a,b] into
subintervals I, =[x,.X.,], k=01,...,N -1, and h=(b—a)/N is the constant stepsize.
Let S(x) be the spline approximation to the function y(x) can be represented on each I by:

8 _ i . 11 _ i
S(X) = ZM s JFZMCk oxelXo %] k=0.,N-1,  (2.10)
= R '

where  S®(a)=S{" (i=0,..8).

The presented method uses three collocation points:

kaj =x +hz;, (=1,2,3), (2.10a)

such that

O<z,<z,<2,=1
By applying the spline approximation (2.10) and its derivatives up to eighth-

order with respect to x, into eighth-order IVPs (2.2)-(2.6), to be satisfied with three
collocation points (2.10a), in each subinterval 1, =[x, X, ,], k=0(1)N-1, then we have,

respectively:
7 i -
SL(Ja) (Xk+Zj ) = _Z gi (Xk+ZJ— )SL(JI) (Xk+Zj ) + g(Xk+Zj ) v )= 123, k= 0(1) N-1, (211)

i=0
with the following initial conditions:

Casel: S{’@=¢; (i=0123), S @) =0 (i=456,7), (2.11a)
Casell: S @) =a, S¥™(@)=0(@=0123). (2.11b)
7 H -
SL(J?) (Xk+ZJ- ) = _Z Qi (Xk+Zj )SL(Jll) (Xk+ZJ- ) . 1(1)3’ k= 0(1) N _11 (212)
i=0
with the following initial conditions:
Case I: sSl’ (a)=0 (i=01223), sf,j’ (a) =1, SSf (@)=0 (i=56,7), (2.12a)
Casell: S{’(a)=0(i=0123), S{(a)=1, SF*(a)=0 (i=123).  (2.12h)
7 H -
SL(JEZ) (Xk+ZJ- ) = _Z Qi (Xk+Zj )SL(JIZ) (Xk+ZJ- ) v ) :1(1)3’ k= 0(1) N _11 (213)

i=0
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with the following initial conditions:

Casel: SP(@)=0(i=01..4), s§’() =1, 5@ =0 (i=6,7), (2.13a)
Case II: Sffzi)(a) =0(=0123), Slﬂlz) () =0, Sffz) (a) =1, 85,22”1) (@=0(=23). (2.13b)
7 1 -
S8 (Kuz) = =20 (K2 )88 %z, + 1 =103, k=0(MN -1, (2.14)
i=0
with the following initial conditions:
Case I: 533’ (@)=0(i=01...5), sff; (a) =1, 557; (a)=0, (2.14a)
Case II: sg; (=0 (i=01...,3), sg’: (a)=1, sS; (@)=0 (i=6,3). (2.14b)
Finally, applying to five IVP:
7 . ]
S8 (z,) = =20 (K2 )SE) Xz, + 1=103, k=0(N -1, (2.15)
i=0
with only the following initial conditions:
sf,j (a)=0(i=01...,6), 35,7; (a)=1. (2.15a)

Now, by substituting spline solutions to the system of linear equations (2.8), the
coefficients c,,c,,c;, and c,the associated by boundary conditions of case | , will be

known as follow:

6] [Su®0) Su) Su.0) Su.®T T4 -S,0)

c,| | Si(b) S, b) Si () Sib)| | B-S(b)
c,| | S5 Si(b) S5 () Sib)| | B -S,b)
c.] [SF®) sE®) sP®) SPO)] |B-5P(b)
Also, by substituting spline solutions to the system of linear equations (2.9), the
coefficients c,,c,,c;, and c, for boundary conditions of case Il , yield out:

] [Su® Su, ) S Su.®7]5-5 0

c,| |SG) Si,b) Si ) Sj, (b) B, =S (b)
G| Slﬂf)(b) 513?(10) Slﬁ?(b) Sf,j’(b) B, =S5 (b)
C, SL(J?) (b) SL(JGZ) (b) 3663) (b) SL(J? (©) | | B8-S (b)
Thus, the spline solutions S®(x),i=0,..,.8 of the BVP (2.1) with two cases of
boundary conditions (2.1a)-(2.1b), will be known by:

SW(x,) = slg‘>(xk)+icjsgj? (x.), i=01..8. (2.16)

Moreover, applying cjtjlocation points Xz, =x +hz;, (=123) to (2.10), we
obtain | '

S(xmj):g@ssug@cm, j=1..3, k=0,..,N-1, (2.17)

where z;,=]13, Xk+2,- €)X s Xn ], (151,2,3).

The first three coefficients C,,,C, ,,C, ;are computed from the linear systems
(2.11)-(2.15) by using the initial value conditions if k=0, or from the previous steps if k>1.

153



Jsana el Aipal) (o Aaanall Ahadll ey Adadl Apaal) al) Jiloe Jad Jali i Aty qaend ik

2.3 Spline Solution of nonlinear eighth-order VP
The numerical solutions of nonlinear eighth-order 1\VVPs by presented spline

method are more easy than BVPs, because the spline approximation (2.10) and its
derivatives S™(x),i =0,...,8, will be applied directly without reducing the problem to

system of first-order differential equations. Now, spline collocation method is applied into
(1.3)-(1.3a), to be satisfied with collocation points (2.10a), in each subinterval

I, =[X, %,.], as follow:
S(E;)()(k+zj): f[xk+zj ’S(Xk+zj)’S’(Xk+zj)""’8(7)(Xk+2j)] ' Xk+zj S
with the following initial conditions:
SY@)=«, i=01..,7.
2.4 A unique Spline Collocation Solution
Consider the following linear eighth-order 1\VP:

y® (%) = F[X, y(X),... Y (X)], xe[a,b] (2.18)
y @@ =", d=0@1)7.
Suppose that F :[a, b]xC[a, b]x---xC'[a, b] = R is an enough smooth function
satisfying the following Lipschitz condition in respect to the last argument:
7
| F(X, Yorus Y7) = F(X, Yoo ¥7) | < LZ| Vi = Vi LY (X Yoo Y200 (X, Yoo ¥7) €[, D] % R®

i=0

k=0(1)N-1

where the constant L is called a Lipschitz constant for F.

These conditions assure the existence of a unique solution y(x) of problem (2.18).

By applying the Spline approximations (2.10) and its derivatives into the problem
(2.18), to be satisfied with three collocation points (2.10a), we obtain the linear system:

(hz;)* (hz;)’
SIEB) + (h Zj)Ck,l +—1Ck,2 +T;Ck,3 = F(Xk+2j ' S(Xk+2j )""! 8(7)(Xk+2j))’ (219)
j=1..3, k=0,.,N-1,
SW@) =S, d=0@1)7. (2.20)
We rewrite (2.19) in the matrices formula:
AC, =F -5, (2.21)
where
B h2z2 h3z3] - - - _ — -
hz, T|21 3!21 Ca Fk+21 She
h2 72 h3 73 _ ~ ~
A=| hz, TZ 3!2 , C=|C, | R = Fk+22 , S, = S,EB) ’
2 3
h % % _Ck,3_ L Fk+1 | _SIEB)_

I:k+Zj = F[Xk+2j ’ S(XIH—Zj ) 1oy 8(7) (Xk+ZJ- )] ' j=112’3'
Theorem : Suppose that F € C([a,b]xR) satisfies Lipschitz condition, and if

=

h® <
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then the spline approximation solution S(x) exists and is uniquely defined for
Z; = j/3 (j=1,2,3), where L is a Lipschitz constant for F.

Proof. It is sufficient to prove that the vector C, can be uniquely determined for

arbitrary given S, . We note that if z; = /3 (j=1,2,3), then the matrix A™ exists and is
nonsingular because Det(A) =h®/729.
Let C},C? e R?, then using ||. ||, from (2.21), we have

Cl=AT'R!'-A'S and C2=A'F’-A’S,

Thus Cland C? can be written in the form

Ci =Q(Cis s Ci2,Ciar Mand CF =Q (C{,, C,,Cls, h)

Applying ||.|l, , Lipschitz condition and using Mathematica, we get

1Q(C)~QuCH) =l (AT F) — (AT FA) || =l A* (R - R 1<

{L1 H1 | Cli,l _Ck2,1 |+|—2H2 |C|i,2 _Ck2,2 |+ L3 H3 | Cli,s _Ck2,3 | }S

6457 14879
—  h)|ct —-C2 |+L, (———=—h")|CL, —-C2 |+
L) [CL = Cl L (D) G, ~CL |
2239
L h®)|C!. —C?
()Gl ~CEL
6457
< L(————h%{|ct. —c?, |+|Cct, —C?, | +|Ct. -C? ,
(2T NG, ~CF 1+ CL, =G, [ +1CL, ~Cls
where
9 _9 1
h 2h h
Al—|_4 4 _9
h2  h? he |, (2.23)
81 _81 27
s h3  h3 |
=28 oo Ty B e ST o gy
8817984 314928 9447840 26244 * 71
o 31y 27479 e 121 o 14879 W W helo,
44089920 11904278400 476171136 590490 * 7!
H, = 2591 he — 4 ho + 311 hio < 2239 hs, v helo ],
10935 * 9! 18600435 2508156 * 71 13365* 9!
6457
L=max (L, L,, ., H.=max (H,, H,,H,) < h®, Vv helod].
(L, L)L) 1 (Hy, Hy, Hy) 62245 71 10,

= . : L 6457 .
Thus, the function Q, defines a contraction mapping if hGLW<1 which

satisfies (2.22). Hence there exists a unique C, that
satisfies C, =Q,(Cy1,Cy 5, Cy5,Cy s, D) which may be found by
iterations C"* =Q, (C.,,h), p=0,1,2,... and this completes the proof.
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3 Error estimation and convergence
We assume that y(x) € C**[a, b], the unique solution of the linear eighth-order

BVP and S(x) be a spline approximation solution to y(x), also T =(z, ) is a 3-dimensional
column vector. Here, the vector 7, is the local truncation error. Applying the Spline

solution S(x) on three collocation points Xk+zj =X +2z;h, (j=1,2,3), putting
y(xk+zj) =y(x, +hz;), S =SM(x)and y{” =y™(x), (m=0,...,8), k=0,...,N-1, for

z; = j/3 (j=1,2,3), we obtain the local truncation error formula:

7, =MC_ +¥,, (3.1)
where
@hy ) [ (zh)®  (zh)o h)tt ] S
; s — y(x, +z,h) (219!) ( iO!) (Zil!) C.,
& | = (h) z,h)® (zh)yo (zhpt| =
L 1SC R P L S
i=0 )
8 i ho hto hi1
> RSO —y(x, +h) o 0 1T | Cys |

i=0 " i

On the other hand, from the system (2.21), we get
C, =A'F —A*S, (3.2)
where A is the matrix (2.20), and F, = [y‘s’(xkﬂl) , y(s’(xk+zz) YO )T

Using Taylor’s expansions for the functions y™(x),m=0,..,8 about X, in the
relation (3.2) and substituting into (3.1), we get the local truncation error at the kth step as
follows:

113 12,02 (y Y |
3188646711 ! (%)

— 1E -1 y — 19456 12,,(12) _
_M(A Fk + A Sk)+lPk - 1594323 *11 h y (Xk) ,k—o,l,..,N (3.3)

17 _hi2y 62
sl Y (%)

where _
09 = 3 BI04+ O, x € Dt Xl

Note from the relation (3.3) that the local truncation error the presented Spline
17

54*1]_I
N steps will be || T ||.= N.O(h*?) = h O(hlz) o(h').

Consequently, we have obtained the following: let yeC'[a, b] be Lipschitz
continuous, then the spline approximation S(x) converges to the solution y(x) of the

eighth-order BVP as h — 0 for z; = j/3 (j=1,2,3) and

collocation method is || 7, ||.= y®?(x,)h* = O(h™®) and thus the global error after
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lim S™MEe)=y™(E), m=0,..8 e=a,b. (3.4)
Furthermore, the convergence order is fourth, i.e., we have
ly™(x)-S™(x)|<C, h"*", m=0,..,7 . (3.5)

Rate of Convergence: Here, the order of convergence is computed when the Spline
collocation method applied to linear BVP (3.1) in the interval [0,1]. To do this, without
loss of generality, we will assume thatq,(x) =-1,q,(x) =0 (i=1...,7), g(x)=0 and initial
conditions y®(0)=1i=0,..,7, with h=1/N . The nodal difference error &, , is defined
by:

g =S} =S2 |, k=1,...N

where S is the spline solution at x, by the present spline method. The

experimental nodal rate of convergence is given by Rate = Log, (¢, /&5 ).

Table 1 shows spline solutions of test problem in the interval [0,1], for N=10, 20, 40
by presented spline method. The order of convergence for the proposed spline method is
computed in Table 2.

Table 1: The local errors for test problem by presented spline method for N=10, h=0.1

k S Sak Sik

1 | 1.105170918075647620 | 1.105170918075647620 | 1.105170918075647630
2 | 1.221402758160169320 | 1.221402758160169820 | 1.221402758160169830
3 | 1.349858807575998330 | 1.349858807576002980 | 1.349858807576003100
4 | 1.491824697641250510 | 1.491824697641269880 | 1.491824697641270310
5 | 1.648721270700071010 | 1.648721270700126980 | 1.648721270700128130
6 | 1.822118800390375450 | 1.822118800390506370 | 1.822118800390508930
7 | 2.013752707470204750 | 2.013752707470471380 | 2.013752707470476430
8 | 2.225540928491965920 | 2.225540928492458320 | 2.225540928492467450
9 | 2.459603111156088650 | 2.459603111156933990 | 2.459603111156949400
10 | 2.718281828457648710 | 2.718281828459020150 | 2.718281828459044820

Table 2: The rate of convergence for presented spline method , with N=10.

2N 2N 4N
k el SN -S| | F =52 =Sac || Rate of Convergence
1 6.50 E-17 1.00 E-18 6.02237
2 5.00 E-16 1.00 E-17 5.64386
3 4.62 E-15 1.01 E-16 5.51547
4 1.909 E-14 4.20 E-16 5.50628
5 5.458 E-14 1.10 E-15 5.6328
6 1.2571 E-13 2.380 E-15 5.72299
7 2.5077 E-13 4.50 E-15 5.8003
8 4.5066 E-13 7.64 E-15 5.88232
9 7.4711E-13 1.187E-14 5.97593
10 1.15979E-12 1.694E-14 6.09729
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Notice: the results in the Table 2 show that the rate of convergence for presented
spline method bigger than five.

4. Numerical Results and Discussion
The experiments below are designed to test the efficiency of the spline method
when applied to linear and nonlinear eighth-order BVPs for two cases of boundary
conditions with uniform grids. These problems have exact solutions, thus we compute their

actual errors. In calculations, the notations & =max| y® (x)-S®(x)| are used to

denote maximum absolute errors, where , k=0,1,..,7 indicate orders of derivatives. Here,
all computations were carried out in double precision.

Problem 1. Consider the eighth-order linear BVP (cf. [1,2,4,9,10]):
YO (X)+xy(xX) =—(48+15x+x*)exp(x), 0< x <1, (4.1)
with two cases of boundary conditions:

Type I: y(0) =0, y'(0) =1, y"(0) =0, y®(0) = -3, | 4.15)
y®) =0, y'()) =—e, y"(1) = —4e, y¥ (1) =9
Type n1: 1Y@ =0y(0)=0, Y90 =-8y"©=-24, (4.1b)
y() =0, y"() = —4e, y¥ (1) = —16e, y© (1) = —36e,

The exact solution is y(x)=x(1—x)e*. Table 3 shows comparisons of presented

spline method with non-polynomial spline method [2], quintic B-spline collocation method
[4] and wavelets method [10]. In Table 4, the absolute errors of problem (4.1)-(4.1b) by
presented spline method is compared with non-polynomial spline method [1]. Figures 1-8,
exhibit comparisons of the exact solution y(x) and its derivatives up to seventh-order with
the spline solutions obtained by presented spline method.

¥ y N .
01 oo R e > 04 =% -v—""‘*\\
5 5 4 P—
Ll — it
-10 - ® Approx 10 4 ® Approx
15 -15
-20 4 20 4
X X
% I s ————— -
00 01 02 03 04 05 05 07 08 09 10 @0 01 02 03 04 05 06 07 03 09 10
Fig.1: The spline solution S(x) and the exact Fig.2: The spline solution S'(x) and the exact
solution y(x), for N=20. solution y*(x), for N=20.
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Fig.3: The spline solution S**(x) and the exact
solution y"(x), for N=20.

Fig.4: The spline solution S®(x) and the exact
solution y®(x), for N=20.
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Fig.5: The spline solution S®(x) and the exact
solution y®(x), for N=20.

Fig.6: The spline solution S®(x) and the exact
solution y®)(x), for N=20.
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Fig.7: The spline solution S®)(x) and the exact
solution y®)(x), for N=20.

Fig.8: The spline solution S (x) and the exact
solution y((x), for N=20.
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Table 3: The absolute errors of problem 1, with condition case I.
. Non-poly. Spline Prese_nted

Quntl_c B- Method[2] Wavelets Spline

Xi Spline Method [10] Method

Method [4] |6 rth-order ?)Ir)((jt:r- 2M=128 h=1/10
0.1 |2.458692E-07| 6.20E—13 | 6.78 E—14 | 5.9025E —13 | 2.1705E—15
0.2 |8.195639E-07| 6.50 E-12 | 1.46 E-13 | 5.9733E —-12 | 3.0841E-14
0.3 {1.996756E-06| 2.00 E—11 | 5.88 E-13 | 1.7961E —11 | 1.4093E-13
0.4 |4.291534E-06| 3.49 E-11 | 9.90 E-13 | 3.1053E —11 | 3.2936E-13
0.5 |6.198883E-06| 4.13 E-11 | 1.07 E-12 | 3.7057E —11 | 5.1576E-13
0.6 |7.182360E-06| 3.49 E—11 | 8.21 E-12 | 3.1905E —11 | 5.9208E-13
0.7 |7.033348E-06| 2.01 E-11 | 4.31 E-13 | 1.8962E —11 | 4.9751E-13
0.8 |5.066395E-06| 6.58 E-12 | 1.30 E-13 | 6.4797E —12 | 2.7495E-13
0.9 |2.413988E-06| 6.37 E-13 | 1.17 E-14 | 6.5917E —13 | 6.5857E-14
1 | - e | e 2.3315E—-15| 9.9696E-18

Table 4: The absolute errors of Problem 1, with condition case 1.

y Norll;lg(t)rlec/)'d?f]l ine Presented Spline Method

Sixth-order | Tenth-order h=1/10 h=1/20
0.1 | 431 E-11 | 6.285E—-11 | 1.3024E-11 |2.2944 E-13
0.2 | 820E-11 | 1.195E-10 | 2.4803E—11 |4.3686 E-13
0.3 | 1.12E-10 | 1.644E-10 | 3.4268E—11 |6.0348 E-13
04 | 1.32E-10 | 1.932E-10 | 4.0571 E-11 |7.1444E-13
05 | 1.39E-10 | 2.031E-10 | 4.3111 E-11 |7.5918 E-13
06 | 1.32E-10 | 1.931E-10 | 4.1561 E-11 |7.3198 E-13
0.7 | 1.12E-10 | 1.642E-10 | 3.5909 E-11 |6.3258 E-13
0.8 | 819E-11 | 1.193E-10 | 2.6503 E-11 |4.6708 E-13
09 | 430E-11 |6.274E-11 | 1.4113 E-11 |2.4890 E-13
1 | | e 1.5670 E-20 |4.2775 E-20

Problem 2. . Consider the eighth-order linear BVP (cf. [5, 7, 8, 11]):
yOX)-y(x)=-8 exp(x), 0<x<1, (4.2)
with two cases of boundary conditions:
0)=1, y'(0) =0, y"(0) =-1, y®(0) =-2,
Type I y(0)=1, y'(0)=0, y'(0) y(0) |
y(l) = 0! y,(l) =—€, y”(l) = _Ze! y(S) (1) = —36,
(4.2a)
0)=1, y"(0)=-1,y*(0)=-3,y®(0) =5,
Type I y(0) =1, y'(0) y(0) y~(0)
y(l) = 0! y”(l) = —26, y(4) (1) = _4e! y(6) (1) = _661
(4.2b)
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0)=1, y'(0)=0,y"(0) =-1,y®(0) = -2,
Ipel: [YO=1Y(©=0y(©=-1y°0) @20
Y90 =-3.y%(0) =4,y (0) =6,y (0) = 7.
Its exact solution is y(X) = (1—x)exp(x) . In Table5, maximum absolute errors are

calculated by presented spline method for N=10. Tables 6-7 show comparisons between
the absolute errors obtained by presented spline method and other methods in [5,7,8,11].

Table 5: Maximum abs errors of Problem 2 with condition case I, for h=0.1.

Table 6: The absolute errors of Problem 2, with condition case II.

i Variational Homotopy | Variational | Decomposition | Presented Spline Method,
' Method [8] Method[11] | Method[7] Method[5] h=1/10
010 |  -----—-- 2.55072E-09 | = ------- 6.71E-08 1.7439E-0016
0.25| 3.8922E-10 |  ------ 4.7350E-15|  ------- 2.7051E-0015
040 |  ------- 3.39829E-09 | ------- 2.06E-07 1.3307E-0014
0.50 | 1.1571E-07 | = ------- 8.2507E-13| = ------- 3.2017E-0014
060|  ------- 3.93756E-09 | = ------- 2.08E-07 5.0898E-0014
0.75 | 1.0479 E-06 |  ------- 1.5260E—11|  ------- 5.8968E-0014
080 |  ------- 4.45065E-09 | = ------- 1.29E-07 2.7675E-0014
1.00 | 4.2188E—06 | 4.93598E—-09 |1.1278E-10 0.000000 2.4384E-0018

Table 7: The absolute errors of Problem 2, with condition case I11.

Xi | Homotopy Method[11] P,\Z.eestirggdhfﬂ'fée
0.1 1.11022 E-16 1.0842E-19
0.2 1.11022 E-16 3.4152E-18
0.3 3.33067 E-16 2.0220E-17
0.4 1.11022 E-15 6.7925E-17
0.5 1.11022 E-16 1.6821E-16
0.6 2.22045 E-16 3.3724E-16
0.7 1.11022 E-16 5.6693E-16
0.8 1.60982 E-15 7.9152E-16
0.9 7.49401 E-16 8.3425E-16
1.0 0.0 3.2725E-16

Problem 3. We consider the following nonlinear BVP (cf. [11]):
{ y® =ep(-x) y?(x), 0<x<1,

y(0)=y'(0) =y"(0) =---=y""(0) =1.
The exact solution is y(x) = exp(x) . Table 8 appears comparisons of the numerical

solution and absolute errors by presented spline method with other by the Homotopy
method [11]. In Table9, maximum absolute errors are computed by presented spline
method for N=10.
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Table 8: The numerical solution and abs errors of nonlinear problem 3, for h=0.1.
Homotopy Method [11, 2010] Presented Spline Methods
Xi
Exact solution | Homo. Sol. | Abs Error Spline Sol. Abs Error
0.1 | 1.1051709180756 | 1.10517 |1.45978 E-07/1.1051709180756 | 1.08420 E-19
0.2 | 1.2214027581602 1.2214 |1.02754 E-07|1.2214027581602 | 5.13153E-16
0.3 | 1.3498588075760 | 1.34986 |2.04184 E-07]1.3498588075760| 4.77320E-15
0.4 | 1.4918246976413 | 1.49182 |1.49324 E-07|1.4918246976413| 1.98108E-14
0.5 | 1.6487212707001 | 1.64872 |1.06158 E-07|1.6487212707001| 5.71415E-14
0.6 | 1.8221188003905 | 1.82212 |1.44092 E-07]1.8221188003904 | 1.33523E-13
0.7 | 2.0137527074705 | 2.01375 |1.05881 E-07|2.0137527074702| 2.71775E-13
0.8 | 2.2255409284925 | 2.22554 |1.4508 E-07 |2.2255409284920| 5.01690E-13
0.9 | 2.4596031111569 24596 (1.62443 E-07|2.4596031111561 | 8.61010E-13
1 |2.7182818284590 | 2.71828 [1.65095 E-07|2.7182818284576| 1.39653E-12
Table 9: Maximum abs errors of Problem 3, for h=0.1.
5(0) 5(1) 5(2) 5(3) 5(4) 5(5) 5(6) 5(7)
14E-12 | 6.4E-12 | 2.3E-11 | 6.6E-11 | 45E-11 | 1.4E-11 | 6.4E-12 | 6.8E-13

Problem 4. Consider the following general eighth-order BVP:
y®& 4y L y® L y® L y@ L y@ Ly v Ly =cos(X) +sin(x), xe[-7/2,712],

y(~712)=-1, Yy (-x12)=1, y'(-z12)=1,y®(-x12)=-1,

y(z12)=1, y((xI2)=-1 y'(z/2)=-1, y?(z/2)=1

The exact solution is y(x) =cos(x) +sin(x). In Tablel0, the absolute errors are
calculated by proposed spline method,. The spline solutions S(x) ,S™(x), S®© (x) as well as

the solutions y(x), ,y

(x), y©(x) are illustrated in Figs.9-14, respectively.
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Fig.9: The spline solution S(x) and the exact

solution y(x), for Problem4, h=Pi/32.
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Fig.11: The spline solution S'**(x) and the
exact solution y***(x), for Problem4, h=Pi/32.
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Fig.12: The absolute error in spline solution
S"™*(x) , for h=Pi/32.
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Fig.13: The spline solution S®)(x) and the
exact solution y®(x), for Problem4, h=Pi/32.

Fig.14: The absolute error in spline solution
S6)(x) , for h=Pi/32.

Table 10: The absolute errors of Problem 4, for N=32 by the presented spline method.

Xi S5© 5o 5@ S5® SW
—%T 8.951E-15 | 6.368E-14 | 2.705E-13 | 8.318E-13 | 1.677E-11
- % 5.171E-14 | 1.436E-13 | 1.042E-13 | 8.905E-13 | 4.702E-12
- % 1.083E-13 | 1.249E-13 | 2.025E-13 | 1.271E-13 | 8.328E-12

0 1.369E-13 | 1.033E-14 | 3.694E-13 | 1.121E-12 | 2.093E-11

% 1.151E-13 | 1.136E-13 | 2.636E-13 | 2.258E-12 | 3.152E-11

% 5.942E-14 | 1504E-13 | 3.125E-14 | 2.652E-12 | 3.841E-11

% 1.206E-14 | 7.698E-14 | 2.375E-13 | 1.888E-12 | 4.008E-11
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% 1.214E-17 | 1.881E-17 | 2.288E-17 | 1.821E-17 | 3.538E-11
X; 56) 5© 50 5®

—%ﬂ 6.367E-11 2.349E-11 3.810E-11 3.277E-11

- % 7.058E-11 6.399E-12 5.140E-11 2.146E-11

- % 6.848E-11 1.240E-11 6.005E-11 4.447E-12
0 5.717E-11 3.112E-11 6.177E-11 1.568E-11
% 3.753E-11 4.758E-11 5.535E-11 3.588E-11
% 1.150E-11 5.959E-11 4.079E-11 5.306E-11
%’ 1.805E-11 6.524E-11 1.935E-11 6.463E-11
% 4.762E-11 6.322E-11 6.662E-12 6.880E-11

5. Conclusion

Spline collocation method is successfully applied with three collocation points for
the numerical solutions of linear and nonlinear eighth-order boundary value problems with
two cases of boundary conditions. The presented spline method is tested on four problems.
Comparisons of the results obtained by the present spline method with obtained by non-
polynomial spline methods [1,2008]-[2,2009], Quintic B-spline collocation method
[4,2012], modified decomposition method [5,2007], variational methods [7,2008]-
[8,2010] wavelets method [10, 2010] and homotopy method [11, 2010] reveal that the
present method is very effective and convenient.
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